Paper
NJC
Indeed, dipyrromethane was not present in the chromatogram and
only the final compound was detected in remarkable amounts.
6 M. Wathier and M. W. Grinstaff, J. Am. Chem. Soc., 2008,
130(30), 9648.
7
8
9
C. M. Drain, A. Varotto and I. Radivojevic, Chem. Rev., 2009,
09(5), 1630.
H. Chen, X. Zhou, Y. Gao, B. Zheng, F. Tang and J. Huang,
Drug Discovery Today, 2014, 19(4), 502.
˙I . Rosenthal, J. Z. Sostaric and P. Riesz, Ultrason. Sonochem.,
New application paths of meso-tetrakys-(furan-2-yl)-porphyrin
1
A Diels–Alder reaction between ethyl crotonate and Zn(II)-meso-
tetrakys-(furan-2-yl)-porphyrin was investigated as a means to
evaluate the possibility of further functionalizing meso-tetrakys-
2
004, 11, 349.
0 E. S. Nyman and P. H. Hynninen, J. Photochem. Photobiol., B,
004, 73, 1.
1 S. Hilderbrand and R. Weissleder, Curr. Opin. Chem. Biol.,
010, 14, 71.
2 W. W. L. Chin, W. K. O. Lau, R. Bhuvaneswari, P. W. S. Heng
and M. Olivo, Cancer Lett., 2007, 245, 127.
3 K. Berg, P. K. Selbo, A. Weyergang, A. Dietze, L. Pransmickaite
and A. Bonsted, J. Microsc., 2005, 218, 133.
(
furan-2-yl)-porphyrin (Scheme 3). The Zn(II) porphyrin complex
1
1
1
1
1
was chosen because of its higher stability as compared to the
free metal. Following the reaction by HPLC-MS analysis, it was
possible to observe the disappearance of the starting material
and the sole formation of the mono derivate of the Diels–Alder
cycloaddition with a yield of about 34% (by HPLC-MS).
Although this reaction still requires optimisation, a wide portfolio
of multifunctional porphyrin derivatives is in the offing.
2
2
4 N. A. Antonova, V. P. Osipova, M. N. Kolyada, N. O. Movchan,
E. R. Milaeva and Y. T. Pimenov, Macroheterocycles, 2010,
Conclusions
3
(2–3), 139.
Two novel MW-assisted synthetic protocols for the preparation of
meso-tetrakys-(furan-2-yl)-porphyrin have been investigated. The
solvent-free method was carried out using solid supported reagents
to give moderate yields and required an oxidation step. Better
results were achieved in dioxane under heterogeneous catalysis.
The few published synthetic procedures entail time-consuming
multi-steps and laborious purifications, moreover they only refer
to the reaction yield omitting product purity. The advantages of the
reported procedure are the short reaction time (10–20 min), the
one step conversion (no further porphyrinogen oxidation is
required) and the efficient, fast and relatively easy purification of
1
1
1
5 M. Yuasa, K. Oyaizu, H. Murata, Y. Sahara, T. Hatsugai and
A. Ogata, J. Oleo Sci., 2007, 56(2), 87.
6 K. J. Barnham, C. L. Masters and A. I. Bush, Nat. Rev. Drug
Discovery, 2004, 3, 205.
7 (a) J. S. Lindsey, Synthesis of meso-Substituted Porphyrins,
in The Porphyrin Handbook, ed. K. M. Kanish, K. M. Smith
and R. Guilard, Academic Press, San Diego, 2000, ch. 2,
p. 45; (b) D. Holten, D. F. Bocian and J. S. Lindsey, Acc.
Chem. Res., 2002, 35, 57; (c) A. D. Adler, F. R. Longo, J. D.
Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, J. Org.
Chem., 1967, 32(2), 476.
2
crude porphyrin. The presence of Zn(AcO) in the reaction mixture
1
8 L. F. Vieira Ferreira, D. P. Ferreira, A. S. Oliveira, R. Boscencu,
R. Socoteanu, M. Ilie, C. Constantin and M. Neagu, Dyes Pigm.,
increases the reaction rate giving the corresponding metallo-
porphyrin. Furanyl moieties on the porphyrin surface were
functionalized by the Diels–Alder reaction.
In conclusion, these promising results and the fast synthesis
of meso-tetrakys-(furan-2-yl)-porphyrins may pave the way for
their decoration and grafting onto nanomaterials.
2012, 95, 296.
1
9 D. Garella, A. Barge, D. Upadhyaya, Z. Rodr ´ı guez, G. Palmisano
and G. Cravotto, Synth. Commun., 2010, 40, 120.
0 (a) C. A. Henriques, S. M. A. Pinto, G. L. B. Aquino, M. Pineiro,
M. J. F. Calvete and M. M. Pereira, ChemSusChem, 2014,
2
7, 2821; (b) M. Pineiro, Curr. Org. Chem., 2014, 11, 89.
Acknowledgements
21 R. P. Bonar-Law, J. Org. Chem., 1996, 61, 3623.
2
2
2 J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney and
A. M. Marguerettaz, J. Org. Chem., 1987, 52, 827.
3 M. Seredyuk, E. Gumienna-Kontecka, A. Brzuszkiewicz,
T. S. Iskenderov and V. A. Kalibabchuk, Acta Crystallogr.,
Sect. E: Struct. Rep. Online, 2014, 70, o1147.
This research was supported by MIUR (fondi ricerca locale
2013) and Associazione Italiana per la Ricerca sul Cancro
(MFAG 2012 and MFAG-13048).
2
4 G. P. Arsenault, E. Bullock and S. F. MacDonald, J. Chem.
Soc., 1960, 82, 4384.
Notes and references
1
Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, 25 (a) The Diels–Alder Reaction: selected protical methods, ed.
X. Zhang and Y. Chen, Adv. Mater., 2009, 21(12), 1275.
C. D. Natale, D. Monti and R. Paolesse, Mater. Today, 2010,
F. Fringuelli and A. Taticchi, J Wiley & Sons, West Sussex,
England, 2002; (b) C. O. Kappe, S. S. Murphrees and
A. Padwa, Tetrahedron, 1997, 53(42), 14179.
2
13(7-8), 46.
3
4
B. Meunier, Chem. Rev., 1992, 92(6), 1411.
B. Gao, Y. Chen and Q. Lei, J. Inclusion Phenom. Macrocyclic 27 R. Pal, T. Sarkar and S. Khasnobis, ARKIVOC, 2012, 570.
26 A. Treibs and N. Aberle, Liebigs Ann. Chem., 1968, 718, 183–207.
Chem., 2012, 74(1–4), 455.
(a) D. Kim and A. Osuka, Acc. Chem. Res., 2004, 37, 735;
28 (a) G. Santosh and M. Ravikanth, Tetrahedron, 2007, 63, 7833;
(b) A. Ghosh, S. M. Mobin, R. Fr ¨o hlich, R. J. Butcher, D. K.
Maity and M. Ravikanth, Inorg. Chem., 2010, 49, 8287.
5
(b) P. D. W. Boyd and C. A. Reed, Acc. Chem. Res., 2005,
38, 235; (c) T. S. Balaban, Acc. Chem. Res., 2005, 38, 612.
29 C.-K. Tai, W.-H. Chuang and B.-C. Wang, J. Lumin., 2013, 142, 8.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016