BULLETIN OF THE
Note
KOREAN CHEMICAL SOCIETY
N-Pivaloyl-(3S,4S)-3-(2-naphtyl)-4-phenyltetrahydro
(Chiralcel ODcolumn;2%2-propanolinhexane; 0.5 mL/min;
217 nm) 77:23 er, 18.0 min (major), 25.4 min (minor).
quinoline (14). A pale yellow oil, 84 mg, 40% overall yield:
1H NMR (CDCl3, 400 MHz) δ 7.57-6.90 (m, 16H), 4.48–4.40
(m, 2H), 3.84 (dd, J = 13.2 and 10.8 Hz, 1H), 3.32 (m, 1H),
1.34 (s, 9H); 13C NMR (CDCl3, 100 MHz) δ 177.9, 144.3,
140.6, 139.0, 133.5, 133.1, 132.6, 130.2, 128.8, 128.6,
128.4, 127.7, 127.6, 126.5, 126.4, 126.2, 125.9, 125.8,
125.7, 125.6, 125.5, 52.1, 52.0, 51.6, 40.2, 28.7; CSP-HPLC
(Chiralcel ODcolumn;1%2-propanolinhexane;0.5 mL/min;
217 nm) 88:12 er, 23.6 min (major), 31.7 min (minor).
N-Pivaloyl-(3S,4S)-4-(p-bromophenyl)-3-phenyl tetra-
hydroquinoline (15). A colorless oil, 123 mg, 55% overall
yield: 1H NMR (CDCl3, 400 MHz) δ 7.55 (d, 1H),
7.31–6.76 (m, 12H), 4.39 (dd, J = 13.6 and 4.0 Hz, 1H),
4.26 (d, J = 9.6 Hz, 1H), 3.72 (dd, J = 13.2 and 11.2 Hz,
1H), 3.06 (m, 1H), 1.34 (s, 9H); 13C NMR (CDCl3, 100
MHz) δ 178.0, 143.4, 141.1, 140.5, 132.3, 131.5, 130.5,
130.0, 128.9, 127.6, 127.4, 126.1, 126.0, 124.9, 120.4,
51.8, 51.7, 51.3, 40.2, 28.7; CSP-HPLC (Chiralcel OD col-
umn; 1% 2-propanol in hexane; 0.5 mL/min; 217 nm) 79:21
er, 17.7 min (major), 25.7 min (minor).
Acknowledgment. This workwassupportedbyKonkukUni-
versity in 2014.
SupportingInformation. Additionalsupportinginformation
is available in the online version of this article.
References
1. (a) J. P. Michael, Nat. Prod. Rep. 2008, 25, 166; (b) C. J. Lovely,
V. Badarinarayana, Curr. Org. Chem. 2008, 12, 1431; (c) R. T.
Skerlj, G. J. Bridger, A. Kaller, E. J. McEachern, J. B. Crawford,
Y. Zhou, B. Atsma, J. Langille, S. Nan, D. Veale, T. Wilson, C.
Hartwig, S. Hatse, K. Princen, E. De Clercq, D. Schols, J. Med.
Chem. 2010, 53, 3376.
2. V. Sridharan, P. A. Suryavanshi, J. C. Menèndez, Chem. Rev.
2011, 111, 7157.
3. (a) C. Zhu, G. Yuan, X. Chen, Z. Yang, Y. Cui, J. Am. Chem. Soc.
2012, 134, 8058; (b) M. M. Elenkov, L. Tang, A. Meetsma, B.
Hauer, D. B. Janssen, Org. Lett. 2008, 10, 2417; (c) A. Gansäuer,
C.-A. Fan, F. Keller, P. Karbaum, Chem. Eur. J. 2007, 13, 8084.
4. (a) Y. K. Ko, C. Im, J. Do, Y. S. Park, Eur. J. Org. Chem. 2014,
2014, 3460; (b) K. H. Kang, Y. Kim, C. Im, Y. S. Park, Tetrahe-
dron 2013, 69, 2542; (c) K. H. Kang, J. Do, Y. S. Park, J. Org.
Chem. 2012, 77, 808; (d) Y. S. Park, E. K. Yum, A. Basu, P. Beak,
Org. Lett. 2006, 8, 2667; (e) Y. Kim, E.-k. Shin, P. Beak, Y. S.
Park, Synthesis 2006, 3805.
5. When the reaction of 1 was carried out in toluene, ether, or n-hex-
ane, the asymmetric lithiation substitution reactions gave
lower diastereoselectivities of 81:19, 84:16, and 83:17 dr, respec-
tively. Among the solvents examined, n-hexane was found to give
a slightly higher enantioselectivity (89:11 er of major diastereo-
mer) than t-BuOMe and significant decrease in enantioselectivity
was observed in the reactions in toluene (72:28 er) and ether
(77:23 er).
N-Pivaloyl-(3S,4S)-4-(p-bromophenyl)-3-(1-naphtyl)
tetrahydroquinoline(16). Acolorless oil, 127 mg, 51%over-
all yield: 1H NMR (CDCl3, 400 MHz) δ 7.83–6.77 (m, 15H),
4.46(m, 1H), 4.36 (m, 1H), 4.05 (m, 1H), 3.86 (m, 1H), 1.24 (s,
9H); 13C NMR (CDCl3, 100 MHz) δ 178.3, 143.7, 140.6,
133.7, 132.5, 131.5, 130.2, 130.1, 128.9, 128.5, 128.4,
127.7, 126.3, 126.2, 126.0, 125.7, 125.6, 125.0, 124.0,
122.1, 120.4, 51.9, 51.1, 44.3, 40.2, 28.7; CSP-HPLC
(Chiralcel OD column; 2% 2-propanol in hexane; 0.5 mL/
min; 217 nm) 94:6 er, 28.2 min (major), 38.4 min (minor).
N-Pivaloyl-(3S,4S)-4-(p-bromophenyl)-3-(p-chlorophe-
nyl)tetrahydroquinoline (17). A colorless oil, 130 mg, 54%
1
overall yield: H NMR (CDCl3, 400 MHz) δ 7.54 (d, 1H),
7.31–6.76 (m, 11H), 4.34 (dd, J = 13.2 and 3.6 Hz, 1H),
4.18 (d, J = 9.6 Hz, 1H), 3.71 (dd, J = 13.2 and 10.8 Hz,
1H), 3.05 (m, 1H), 1.33 (s, 9H); 13C NMR (CDCl3, 100
MHz) δ 178.0, 142.9, 140.4, 139.6, 133.2, 132.0, 131.6,
130.5, 129.9, 129.1, 128.9, 126.3, 125.9, 125.0, 120.6,
51.7, 51.2, 51.0, 40.2, 28.7; CSP-HPLC (Chiralcel OD col-
umn; 1% 2-propanol in hexane; 0.5 mL/min; 217 nm) 73:27
er, 18.6 min (major), 26.6 min (minor).
6. The relative configuration of trans-5 is assigned by comparison to
the NMR of the authentic compound in the following literature.
We assume the same stereochemical assignments for all tetrahy-
droquinolines 10–18. b A. R. Katrizky, B. Rachwal, S. Rachwal,
J. Org. Chem. 1995, 60, 7631.
7. The selectivity factor (s) was estimated using the equation, s = kR/
kS = ln[(1 – C)(1 – ee)]/ln[(1 – C)(1 + ee)], where ee is the enan-
tiomeric excess of unconverted epoxide and the conversion (C)
1
determined by H NMR of reaction mixture. The selectivity (s
N-Pivaloyl-(3S,4S)-4-(p-bromophenyl)-3-(2-naphtyl)
tetrahydroquinoline (18). A yellow oil, 112 mg, 45% overall
= 7) is an average of three experiments, while conversion and er
are for a specific case.
1
yield: H NMR (CDCl3, 400 MHz) δ 7.82–6.76 (m, 15H),
8. The (S)-configuration at benzylic position of 6 is consistent with
thepreviouslyestablishedresultsinthesubstitutionof 1withother
electrophiles.4
9. (a) R.-H. Fan, X.-L. Hou, J. Org. Chem. 2003, 68, 726; (b) M. Taj-
bakhsh, R. Hosseinzadeh, P. Rezaee, H. Alinezhad, J. Mex. Chem.
Soc. 2012, 56, 402; (c) A. T. Placzek, J. L. Donelson, R. Trivedi,
R. A. Gibbs, S. K. De, Tetrahedron Lett. 2005, 46, 9029.
4.46 (dd, J = 13.2 and 3.6 Hz, 1H), 4.38 (d, J = 10.0 Hz,
1H), 3.82 (dd, J = 13.2 and 11.2 Hz, 1H), 3.25 (m, 1H),
1.35 (s, 9H); 13C NMR (CDCl3, 100 MHz) δ 177.8, 143.3,
140.5, 138.4, 133.4, 132.6, 132.4, 131.4, 130.4, 130.0,
128.7, 127.7, 127.6, 126.4, 126.3, 126.1, 125.9, 125.8,
125.4, 124.9, 120.4, 52.0, 51.6, 51.4, 40.1, 28.6; CSP-HPLC
Bull. Korean Chem. Soc. 2015, Vol. 36, 1500–1503
© 2015 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim