COMMUNICATIONS
Interconversion between m-h2,h2-C60 and
m3-h2,h2,h2-C60 on a Carbido Pentaosmium
Cluster Framework**
excellent, which is unusual for such reactions. The stepwise
procedure allows the highest ee values to be obtained together
with high chemical yields.[23] These results show the wide
scope of suchaldol reactions, withcertain limitations for
bulky and/or conjugated aldehydes (results not optimized).
The use of bulkier trialkylsilyloxyfurans slightly improved the
d.r.; further optimization studies are in progress. Furthermore
these findings may provide some evidence for amplification of
ee values of biomolecules (by chemical reactions) in the
chemical origins of life. Indeed, conditions for aldol reactions
may have been found in prebiotic systems. More experiments
are nevertheless needed to set a mathematical model for such
a mechanism.[24] Sucha process could also be involved in other
asymmetric reactions.[23, 25, 26]
Kwangyeol Lee, Chang Hoon Lee, Hyunjoon Song,
Joon T. Park,* Hong Young Chang, and
Moon-Gun Choi
Exohedral metallofullerenes have recently attracted much
attention concerning the effects of metal coordination on the
chemical and physical properties of C60.[1] Most approaches to
forming metal complexes have been based on metal ± C60 p-
complex chemistry, which has resulted in h2-C60, m-h2,h2-C60,
and m3-h2,h2,h2-C60 ligands in monometallic (for most met-
als),[2] bimetallic (Re2, Ru2, Ir2),[3] and metal cluster com-
plexes (Ru3, Os3, Ru5C, Ru6C, PtRu5C),[4, 5] respectively.
Metal clusters can potentially accommodate all these C60
bonding modes, but the interaction of C60 withcluster
frameworks has been, thus far, dominated by the face-capping
cyclohexatriene-like bonding mode, m3-h2,h2,h2-C60. Th em-
h2,h2-C60 bonding mode has never been observed on a cluster
framework, although it has been postulated as an intermedi-
ate for the transformation of [Os3(CO)11(h2-C60)] to [Os3-
(CO)9(m3-h2,h2,h2-C60)] by loss of carbonyl ligands.[5c] The
interconversion among the three kinds of the C60 ligands
remains to be established in the area of C60 ± metal cluster
chemistry. We have recently observed the elusive m-h2,h2-C60
bonding mode on an Os5C cluster framework, and further-
more demonstrated that the two C60 bonding modes m-h2,h2
and m3-h2,h2,h2 are interconvertible.
Received: November 12, 1999 [Z14266]
[1] K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 1995, 378, 767.
[2] a) N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, Science 1996,
273, 1686; b) Y. Zhang, G. B. Schuster, J. Org. Chem. 1995, 60, 7192.
[3] O. Buchardt, Angew. Chem. 1974, 86, 222; Angew. Chem. Int. Ed.
Engl. 1974, 136, 179.
[4] T. Shibata, J. Yamamoto, N. Matsumoto, S. Yonekubo, S. Osanai, K.
Soai, J. Am. Chem. Soc. 1998, 120, 12157.
[5] T. Shibata, H. Morioka, T. Hayase, K. Choji, K. Soai, J. Am. Chem.
Soc. 1996, 118, 471.
[6] T. Shibata, T. Hayase, J. Yamamoto, K. Soai, Tetrahedron: Asymmetry
1997, 8, 1717.
[7] A. H. Alberts, H. Wynberg, J. Am. Chem. Soc. 1989, 111, 7265.
[8] L. Shengjian, J. Yaozhong, M. Aiqiao, Y. Guishu, J. Chem. Soc. Perkin
Trans 1 1993, 885.
[9] H. Danda, H. Nishikawa, K. Otaka, J. Org. Chem. 1991, 56, 6740.
[10] a) F. Rebiere, O. Riant, H. B. Kagan, Tetrahedron: Asymmetry 1990, 1,
199; b) D. P. Heller, D. R. Goldberg, W. D. Wulff, J. Am. Chem. Soc.
1997, 119, 10551.
Reaction of [Os5C(CO)12(PPh3)(NCMe)2] withC
refluxing ClC6H5 produced a mixture of 1 and 2 (see the
in
60
Á
Â
[11] M. Szlosek, X. Franck, B. Figadere, A. Cave, J. Org. Chem. 1998, 63,
5169.
[Os5C(CO)11(PPh3)(m3-h2,h2,h2-C60)]
[Os5C(CO)12(PPh3)(m-h2,h2-C60)]
1
[12] D. J. Berrisford, C. Bolm, K. B. Sharpless, Angew. Chem. 1995, 107,
1159; Angew. Chem. Int. Ed. Engl. 1995, 34, 1059.
2
[13] K. Mikami, S. Matsukawa, T. Volk, M. Terada, Angew. Chem. 1997,
109, 2936; Angew. Chem. Int. Ed. Engl. 1997, 36, 2768.
[14] K. Mikami, S. Matsukawa, Nature 1997, 385, 613.
Experimental Section). The conversion of 1 into 2 could be
effected by heating a solution of 1 in ClC6H5 at 808C under
1 atm of carbon monoxide. Upon thermolysis at 1328C, 2 was
cleanly reconverted into 1 by loss of a carbonyl ligand
(Scheme 1).
The solid-state structure of 1 is isomorphous to that of the
ruthenium analogue [Ru5C(CO)11(PPh3)(m3-h2,h2,h2-C60)].[4b]
The structure of 2 (Figure 1) reveals a very intriguing feature
Â
[15] M. Chavarot, J. J. Byrne, P. Y. Chavant, J. Pardillos-Guindet, Y. Vallee,
Tetrahedron: Asymmetry 1998, 9, 3889.
[16] a) C. Puchot, O. Samuel, E. Dunach, S. Zhao, C. Agami, H. B. Kagan,
J. Am. Chem. Soc. 1986, 108, 2353; b) N. Oguni, Y. Matsuda, T.
Kaneko, J. Am. Chem. Soc. 1988, 110, 7877; c) M. Kitamura, S. Okada,
S. Suga, R. Noyori, J. Am. Chem. Soc. 1989, 111, 4028; d) C. Girard,
H. B. Kagan, Angew. Chem. 1998, 110, 3088; Angew. Chem. Int. Ed.
1998, 37, 2922; e) B. L. Feringa, R. A. van Delden, Angew. Chem.
1999, 111, 3624; Angew. Chem. Int. Ed. 1999, 38, 3418.
Á
Â
[17] B. Figadere, J.-C. Harmange, A. Laurens, A. Cave, Tetrahedron Lett.
[*] Prof. J. T. Park, Dr. K. Lee, C. H. Lee, H. Song
Department of Chemistry & Center for Molecular Science
Korea Advanced Institute of Science and Technonogy
Taejon, 305-701 (Korea)
1991, 32, 7539.
Á
Â
[18] B. Figadere, C. Chaboche, J. F. Peyrat, A. Cave, Tetrahedron Lett.
1993, 34, 8093.
[19] H. Nishikori, K. Ito, T. Katsuki, Tetrahedron: Asymmetry 1998, 9,
1165.
[20] S.-I. Kiyooka, H. Maeda, M. Abu Hena, M. Uchida, C.-S. Kim, M.
Horiike, Tetrahedron Lett. 1998, 39, 8287.
[21] G. Rassu, F. Zanardi, L. Battistini, E. Gaetani, G. Casiraghi, J. Med.
Chem. 1997, 40, 168.
Fax : (82)42-869-2810
H. Y. Chang, Prof. M.-G. Choi
Department of Chemistry, Yonsei University
Seoul, 120-749 (Korea)
[**] We are grateful to the Korea Science Engineering Foundation
(KOSEF) for financial support (project no. 1999-1-122-001-5) of this
research and a postdoctoral fellowship to K.L. The X-ray diffraction
studies were carried out at the X-ray Crystallographic Laboratory of
Yonsei University, which was supported in part by KOSEF.
[22] A. H. Alberts, H. Wynberg, J. Chem. Soc. Chem. Commun. 1990, 453.
[23] S. Kobayashi, Y. Fujishita, T. Mukaiyama, Chem. Lett. 1990, 1455.
[24] E. F. Kogut, J. C. Thoen, M. A. Lipton, J. Org. Chem. 1998, 63, 4604.
Á
Â
[25] M. Pichon, J. C. Jullian, B. Figadere, A. Cave, Tetrahedron Lett. 1998,
39, 1755.
Supporting information for this article is available on the WWW under
[26] D. A. Evans, M. C. Kozlowski, J. A. Murry, C. S. Burgey, K. R.
Campos, B. T. Connell, R. J. Staples, J. Am. Chem. Soc. 1999, 121, 669.
Angew. Chem. Int. Ed. 2000, 39, No. 10
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
0570-0833/00/3910-1801 $ 17.50+.50/0
1801