6138 J. Agric. Food Chem., Vol. 53, No. 15, 2005
Knol et al.
(17) Biedermann-Brem, S.; Noti, A.; Grob, K.; Imhof, D.; Bazzocco,
D.; Pfefferle, A. How much reducing sugar may potatoes contain
to avoid excessive acrylamide formation during roasting and
baking? Eur. Food Res. Technol. 2003, 217, 369-373.
(18) Taeymans, D.; Wood, J.; Ashby, P.; Blank, I.; Studer, A.; Stadler,
R. H.; Gonde´, P.; Van Eijck, P.; Lalljie, S.; Lingnert, H.;
Lindblom, M.; Matissek, R.; Mu¨ller, D.; Tallmadge, D.; O’Brien,
J.; Thompson, S.; Silvani, D.; Whitmore, T. A review of
acrylamide: an industry perspective on research, analysis,
formation, and control. Crit. ReV. Food Sci. Nutr. 2004, 44, 323-
347.
(19) Van Boekel, M. A. J. S. Kinetic aspects of the Maillard
reaction: a critical review. Nahrung 2001, 45, 150-159.
(20) Martins, S. I. F. S.; Van Boekel, M. A. J. S. A kinetic model for
the glucose/glycine Maillard reaction pathways. Food Chem.
2005, 90, 257-269.
(21) Mundt, S.; Wedzicha, B. L. A kinetic model for the glucose-
fructose-glycine browning reaction. J. Agric. Food Chem. 2003,
51, 3651-3655.
(22) Yasuhara, A.; Tanaka, Y.; Hengel, M.; Shibamoto, T. Gas
chromatographic investigation of acrylamide formation in brown-
ing model systems. J. Agric. Food Chem. 2003, 51, 3999-
4003.
tions and the kinetic modeling suggested that acrylamide is not
an end product in the Maillard reaction. The behavior of
acrylamide suggests that it is an intermediate. The multiresponse
model derived in this study is a first step into the realization of
a tool that can be used to predict how acrylamide reduction in
foods containing asparagine and reducing sugars can be ac-
complished. Further research is on the way to determine
intermediate reaction products in order to extend the kinetic
model. In addition, the formation of compounds via the Strecker
degradation route and the degradation of sugars into carbohy-
drate fragments will be investigated to improve the current
kinetic model in estimating the behavior of sugars and aspar-
agine.
LITERATURE CITED
(1) Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; To¨rnqvist,
M. Analysis of acrylamide, a carcinogen formed in heated
foodstuffs. J. Agric. Food Chem. 2002, 50, 4998-5006.
(2) Ahn, J. S.; Castle, L.; Clarke, D. B.; Lloyd, A. S.; Philo, M. R.;
Speck, D. R. Verification of the findings of acrylamide in heated
foods. Food Addit. Contam. 2002, 19, 1116-1124.
(3) Becalski, A.; Lau, B. P.-Y.; Lewis, D.; Seaman, S. W. Acryl-
amide in foods: Occurrence, sources, and modeling. J. Agric.
Food Chem. 2003, 51, 802-808.
(4) Konings, E. J. M.; Baars, A. J.; Van Klaveren, J. D.; Spanjer,
M. C.; Rensen, P. M.; Hiemstra, M.; Van Kooij, J. A.; Peters,
P. W. J. Acrylamide exposure from foods of the Dutch population
and an assessment of the consequent risks. Food Chem. Toxicol.
2003, 41, 1569-1579.
(5) Friedman, M. Chemistry, biochemistry, and safety of acrylamide.
A review. J. Agric. Food Chem. 2003, 51, 4504-4526.
(6) IARC. Acrylamide. In IARC Monographs on the eValuation of
carcinogen risk to humans: some industrial chemicals; Inter-
national Agency for Research on Cancer: Lyon, France, 1994;
Vol. 60, pp 389-433.
(7) Mottram, D. S.; Wedzicha, B. L.; Dodson, A. T. Acrylamide is
formed in the Maillard reaction. Nature 2002, 419, 448-449.
(8) Stadler, R. H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, P.
A.; Robert, M.-C.; Riediker, S. Acrylamide from Maillard
reaction products. Nature 2002, 419, 449-450.
(9) Weisshaar, R.; Gutsche, B. Formation of acrylamide in heated
potato products. Model experiments pointing to asparagine as
precursor. Deutsch. Lebensm.-Rundsch. 2002, 98, 397-400.
(10) Yaylayan, V. A.; Wnorowski, A.; Perez Locas, C. Why aspar-
agine needs carbohydrates to generate acrylamide. J. Agric. Food
Chem. 2003, 51, 1753-1757.
(11) Zyzak, D. V.; Sanders, R. A.; Stojanovic, M.; Tallmadge, D.
H.; Loye Eberhart, B.; Ewald, D. K.; Gruber, D. C.; Morsch, T.
R.; Strothers, M. A.; Rizzi, G. P.; Villagran, M. D. Acrylamide
formation mechanism in heated foods. J. Agric. Food Chem.
2003, 51, 4782-4787.
(23) Wedzicha, B. L.; Mottram, D. S.; Elmore, J. S.; Koutsidis, G.;
Dodson, A. T. Kinetic models as a route to control acrylamide
formation in food. In Chemistry and Safety of Acrylamide in
Food; M. Friedman and D. S. Mottram, Eds.; Springer: New
York, 2005; pp 235-253.
(24) Barber, D. S.; Hunt, J.; LoPachin, R. M.; Ehrich, M. Determi-
nation of acrylamide and glycidamide in rat plasma by reversed-
phase high performance liquid chromatography. J. Chromatogr.
B 2001, 758, 289-293.
(25) Peng, L.; Farkas, T.; Loo, L.; Dixon, A.; Teuscher, J.; Kallury,
K. Rapid and reproducible extraction of acrylamide in French
fries using a single solid-phase sorbent. Am. Lab. News. 2003,
10-14.
(26) Martins, S. I. F. S.; Marcelis, A. T. M.; Van Boekel, M. A. J. S.
Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)glycine
degradation pathways. Part IsReaction mechanism. Carbohydr.
Res. 2003, 338, 1651-1663.
(27) Davidek, T.; Clety, N.; Aubin, S.; Blank, I. Degradation of the
Amadori compound N-(1-deoxy-D-fructos-1-yl)glycine in aque-
ous model systems. J. Agric. Food Chem. 2002, 50, 5472-
5479.
(28) Davidek, T.; Clety, N.; Devaud, S.; Robert, F.; Blank, I.
Simultaneous quantitative analysis of Maillard reaction precursors
and products by High-Performance Anion Exchange Chroma-
tography. J. Agric. Food Chem. 2003, 51, 7259-7265.
(29) Husek, P. Method for preparing sample for amino acid analysis
and kit for analyzing the same. Phenomenex Inc., EP 1,033,-
576, March 1999.
(30) Leong, L. P. Modelling of the Maillard reaction involving more
than one amino acid. Ph.D. Dissertation, University of Leeds,
Leeds, U.K., 1999.
(31) Leong, L. P.; Wedzicha, B. L. A critical appraisal of the kinetic
model for the Maillard browning of glucose with glycine. Food
Chem. 2000, 68, 21-28.
(12) Wenzl, T.; Beatriz de la Calle, M.; Anklam, E. Analytical
methods for the determination of acrylamide in food products:
a review. Food Addit. Contam. 2003, 20, 885-902.
(13) Svensson, K.; Abramsson, L.; Becker, W.; Glynn, A.; Hellena¨s,
K.-E.; Lind, Y.; Rose´n, J. Dietary intake of acrylamide in
Sweden. Food Chem. Toxicol. 2003, 41, 1581-1586.
(14) Mucci, L. A.; Dickman, P. W.; Steineck, G.; Adami, H.-O.;
Augustsson, K. Dietary acrylamide and cancer of the large bowel,
kidney, and bladder: Absence of an association in a population-
based study in Sweden. Br. J. Cancer 2003, 88, 84-89.
(15) Jung, M. Y.; Choi, D. S.; Ju, J. W. A novel technique for
limitation of acrylamide formation in fried and baked corn chips
and in French fries. J. Food Sci. 2003, 68, 1287-1290.
(16) Grob, K.; Biedermann, M.; Biedermann-Brem, S.; Noti, A.;
Imhof, D.; Amrein, T.; Pfefferle, A.; Bazzocco, D. French fries
with less than 100 µg/kg acrylamide. A collaboration between
cooks and analysts. Eur. Food Res. Technol. 2003, 217, 185-
194.
(32) Brands, C. M. J.; Wedzicha, B. L.; Van Boekel, M. A. J. S.
Quantification of melanoidin concentration in sugar-casein
systems. J. Agric. Food Chem. 2002, 50, 1178-1183.
(33) Stadler, R. H.; Robert, F.; Riediker, S.; Varga, N.; Davidek, T.;
Devaud, S.; Goldmann, T.; Hau, J.; Blank, I. In-depth mecha-
nistic study on the formation of acrylamide and other vinylogous
compounds by the Maillard reaction. J. Agric. Food Chem. 2004,
52, 5550-5558.
(35) Brands, C. M. J.; Van Boekel, M. A. J. S. Reactions of
monosaccharides during heating of sugar-casein systems: build-
ing of a reaction network model. J. Agric. Food Chem. 2001,
49, 4667-4675.