9716
R. H. Tale, K. M. Patil / Tetrahedron Letters 43 (2002) 9715–9716
Scheme 2.
Table 1. Synthesis of acyl azides catalyzed by boronic
acid 1
Acknowledgements
The authors are grateful to Sudhir Dapurkar (Research
Scholar, I.I.T., Mumbai) for the gift of boronic acid 1.
Entry
Carboxylic acid
Acyl azide
Yielda,b (%)
1
2
3
Benzoic acid
Cinnamic acid
2-Chlorobenzoic
acid
Benzoyl azide
Cinnamyl azide
2-Chlorobenzoyl
azide
85
83
92
References
1. Laszio, P.; Polla, E. Tetrahedron Lett. 1984, 25, 3701.
2. Grundmmann, C. Methoden der Org. Chem. (Houben-
Weyl) 1965, 10, 777.
3. Huisgen, R.; Ugi, I. Chem. Ber. 1957, 90, 2914.
4. Sakai, K.; Anselme, J. P. J. Org. Chem. 1971, 36, 2387.
5. Surya Prakash, G. K.; Arvanaghi, M.; Olah, G. A. J.
Org. Chem. 1983, 48, 3358.
6. (a) Koyashi, S.; Kamiyama, K.; Iimori, T.; Ohno, M.
Tetrahedron Lett. 1984, 25, 2557; (b) Canone, P.; Akssira,
M.; Dahouh, A.; Kashmi, H.; Boumzebrra, M. Heterocy-
cles 1993, 36, 1305.
4
5
4-Chlorobenzoic
acid
4-Hydroxybenzoic 4-Hydroxybenzoyl
acid
Hexanoic acid
Decanoic acid
4-Iodobenzoic acid 4-Iodobenzoyl azide 95
4-Methoxybenzoic 4-Methoxybenzoyl
acid
4-Nitrobenzoic
acid
4-Chlorobenzoyl
azide
94
96
azide
Hexanoyl azide
Decanoyl azide
6
7
8
9
92
90
95
71
83
azide
4-Nitrobenzoyl
azide
10
11
12
13
Phenylacetic acid
Phenylacetyl azide
Phenoxyacetic acid Phenoxyacetyl azide 83
3,5-Dinitrobenzoic 3,5-Dinitrobenzoyl 66
acid azide
7. Arrieta, A.; Aizpurua, J. M.; Palomo, C. Tetrahedron
Lett. 1984, 25, 3365.
8. Shao, H.; Colucci, M.; Tong, S.; Zhang, H.; Castelhano,
A. L. Tetrahedron Lett. 1998, 39, 7235.
9. Froeyen, P. Phosphorus, Sulfur Silicon Relat. Elem. 1994,
89, 57.
10. (a) Lee, J. G.; Kwak, K. H. Tetrahedron Lett. 1992, 33,
3165; (b) Reddy, P. S.; Yadagiri, P.; Lumin, S.; Flack, J.
R. Synth. Commun. 1988, 18, 545.
a Yields refer to the pure isolated product.
b The products were characterized by their physical constants, spec-
troscopic data (IR, 1H NMR) and elemental microanalyses.
11. Elmorsy, S. S. Tetrahedron Lett. 1995, 36, 1341.
12. Gumaste, V. K.; Bhawal, B. M.; Deshmukh, A. R.
Tetrahedron Lett. 2002, 43, 1345.
13. Bandgar, B. P.; Pandit, S. S. Tetrahedron Lett. 2002, 43,
3413.
14. See, for example: Pelter, A.; Smith, K.; Brown, H. C.
Borane Reagents; Academic Press: London, 1988; Smith,
K. In Organometallics in Synthesis; Schlosser, M., Ed.
Organoboron Chemistry. Wiley: Chichester, 1994.
15. Boron, Metallo-Boron Compounds and Boranes; Adams,
R. M., Ed.; Wiley: New York, 1964; p. 693: data quoted
in Registry of Toxic Effects of Chemical Substances,
NIOSH, 2001.
16. (a) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem.
1996, 61, 4196; (b) Ishihara, K.; Ohara, S.; Yamamoto,
H. Macromolecules 2000, 33, 3511.
17. (a) Moore, H. W.; Goldish, D. M. In The Chemistry of
Halides, Pseudo-halides and Azides; Patai, S.; Rappoport,
Z., Eds.; Wiley: Chichester, UK, 1983; Vol. 1, p. 321; (b)
Lowski, W. In Azides Nitrenes; Scriven, E. F. V., Ed.;
Academic: Orlando, FL, 1984; p. 205.
reported in the literature12,13 are some of the notewor-
thy features of this method.
In conclusion, we have developed a mild, simple, gen-
eral and environmentally benign protocol for the one-
pot synthesis of acyl azides from carboxylic acids.
General procedure:
To a solution of the carboxylic acid (2 mmol) and
sodium azide (10 mmol) in dry acetonitrile (20 ml) was
added Na2SO4 (1 g) and boronic acid 1 (1 mol%) and
the mixture was stirred at room temperature for 10 h.
After completion of the reaction (TLC), the mixture
was filtered, washed with aqueous NaHCO3 and
extracted with chloroform (3×10 ml). After drying over
anhydrous Na2SO4, the solvent was evaporated to give
the product. The product was purified by column chro-
matography (ethyl acetate:petroleum ether, 1:9).