S. R. Marder et al.
[6] M. Lehmann, G. Kestemont, R. G. Aspe, C. Buess-Herman, M. H. J.
Koch, M. G. Debije, J. Piris, M. P. de Haas, J. M. Warman, M. D.
Watson, V. Lemaur, J. Cornil, Y. H. Geerts, R. Gearba, D. A.
Ivanov, Chem. Eur. J. 2005, 11, 3349.
[34] A. R. Murphy, J. S. Liu, C. Luscombe, D. Kavulak, J. M. J. FrØchet,
R. J. Kline, M. D. McGehee, Chem. Mater. 2005, 17, 4892.
[35] H. Xu, Y. Wang, G. Yu, W. Xu, Y. B. Song, D. Q. Zhang, Y. Q. Liu,
D. B. Zhu, Chem. Phys. Lett. 2005, 414, 369.
[36] J. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, J. Am. Chem.
Soc. 2001, 123, 9482.
[7] C. W. Ong, S.-C. Liao, T. H. Chang, H.-F. Hsu, Tetrahedron Lett.
2003, 44, 1477.
[37] X.-C. Li, H. Sirringhaus, F. Garnier, A. B. Holmes, S. C. Moratti, N.
Feeder, W. Clegg, S. J. Teat, R. H. Friend, J. Am. Chem. Soc. 1998,
120, 2206.
[38] J. E. Anthony, D. L. Eaton, S. R. Parkin, Org. Lett. 2002, 4, 15.
[39] K. Kobayashi, R. Shimaoka, M. Kawahata, M. Yamanaka, K. Yama-
guchi, Org. Lett. 2006, 8, 2385.
[8] C. W. Ong, S.-C. Liao, T. H. Chang, H.-F. Hsu, J. Org. Chem. 2004,
69, 3181.
[9] T. Ishi-i, K. Yaguma, R. Kuwahara, Y. Taguri, S. Mataka, Org. Lett.
2006, 8, 585.
[10] C. K. Chan, F. Amy, Q. Zhang, S. Barlow, S. R. Marder, A. Kahn,
Chem. Phys. Lett. 2006, 431, 67.
[40] A. M. van de Craats, J. M. Warman, H. Hasebe, R. Naito, K. Ohta,
J. Phys. Chem. B 1997, 101, 9224.
[41] S. Kumar, D. S. S. Rao, S. K. Prasad, J. Mater. Chem. 1999, 9, 2751.
[42] R. I. Gearba, M. Lehmann, J. Levin, D. A. Ivanov, M. H. J. Koch, J.
Barberµ, M. G. Debije, J. Piris, Y. H. Geerts, Adv. Mater. 2003, 15,
1614.
[11] S. Skujins, G. A. Webb, Tetrahedron 1969, 25, 3935.
[12] M. Du, X.-H. Bu, K. Biradha, Acta Crystallogr. Sect. C 2001, 57,
199.
[13] S. K. Kotovskaya, N. M. Perova, Z. M. Baskakova, S. A. Romanova,
V. N. Charushin, O. N. Chupakhin, Zh. Org. Khim. 2001, 37, 598.
[14] R. B. Baudy, L. P. Greenblatt, I. L. Jirkovsky, M. Conklin, R. J.
Russo, D. R. Bramlett, T. A. Emrey, J. T. Simmonds, D. M. Kowal,
R. P. Stein, R. P. Tasses, J. Med. Chem. 1993, 36, 331.
[15] A. Heaton, M. Hill, F. Drakesmith, J. Fluorine Chem. 1997, 81, 133.
[16] J. F. W. Keana, S. M. Kher, S. X. Cai, C. M. Dinsmore, A. G. Glenn,
J. Guastella, J. Huang, V. Ilyin, Y. Lu, P. L. Mouser, R. M. Wood-
ward, E. Weber, J. Med. Chem. 1995, 38, 4367.
[17] We were unable to obtain 8 analytically pure and so did not obtain
PES and IPES spectra.
[18] M. Alfonso, H. Stoeckli-Evans, Acta Crystallogr. Sect. E 2001, 57,
0242.
[43] This type of estimate assumes that the analyte and reference redox
system show comparable solvation energies and comparable solid-
state polarisation effects and ideally requires more or less reversible
electrochemistry to ensure that the observed potential represents
the thermodynamic potential. Moreover, differences in the magni-
tudes of solvation energies and solid-state polarisation effects mean
that IPs are best estimated from M+/M redox couples and a known
IP, while EAs are best estimated from M/Mꢀ and a known EA. For
example, we recently found that, in the case of 1,1-diaryl-2,3,4,5-tet-
raphenylsiloles, use of [silole]/
[silole]ꢀ potentials, the TPD+/TPD
A
potential and the IP of TPD gave EAs almost 1 eV more exothermic
than the values obtained by direct measurement. See reference [26].
[44] L. Segev, A. Salomon, A. Natan, D. Cahen, L. Kronik, F. Amy,
C. K. Chan, A. Kahn, Phys. Rev. B 2006, 74, 165323/1.
[45] F. Amy, C. K. Chan, W. Zhao, J. Hyung, A. Kahn, M. Ono, N. Ueno,
D. Cahen, L. Kronik, G. Nesher, A. Salomon, L. Segev, O. Seitz, H.
Shpaisman, A. Schçll, E. Umbach, J. Phys. Chem. B 2006, 110,
21826.
[46] N. Sato, H. Inokuchi, E. A. Silinish, Chem. Phys. 1987, 115, 269.
[47] J. D. Anderson, E. M. McDonald, P. A. Lee, M. L. Anderson, E. L.
Ritchie, H. K. Hall, T. Hopkins, E. A. Nash, J. Wang, A. Padias, S.
Thayumanavan, S. Barlow, S. R. Marder, G. Jabbour, S. Shaheen, B.
Kippelen, N. Peyghambarian, R. M. Wightman, N. R. Armstrong, J.
Am. Chem. Soc. 1998, 120, 9646.
[19] Bond
lengths
from
the
structure
of
[Ag3(1)]-
ACHTREUNG
M. Nishimura, T. Ito, K. Tanaka, M. Shionoya, Chem. Commun.
2000, 1953) are not included, since these were rather imprecisely de-
termined.
[20] The structures of the radical ions of 6, in which there are a large
number of degrees of freedom, could not be successfully minimised.
Accordingly, we were also unable to calculate reorganisation ener-
gies and adiabatic values of IP and EA for this compound.
[21] R. A. Marcus, J. Chem. Phys. 1956, 24, 966.
[22] For example, see:R. D. Hreha, C. P. George, A. Haldi, B. Domercq,
M. Malagoli, S. Barlow, J.-L. BrØdas, B. Kippelen, S. R. Marder,
Adv. Funct. Mater. 2003, 13, 967. While the barrier is strictly DH°,
DS° can be neglected due to similar vibrational degrees of freedom
associated with the two adiabatic surfaces, meaning l/4 is also a
good estimate of the free-energy barrier, DG°.
[23] The reorganisation energy can also be obtained from a full vibra-
tional analysis through summation of the contributions of the vibra-
tional modes involved (R. A. Marcus, N. Sutin, Biochim. Biophys.
Acta 1985, 811, 265).
[24] M. Malagoli, J.-L. BrØdas, Chem. Phys. Lett. 2000, 327, 13.
[25] B. C. Lin, C. P. Cheng, Z.-Q. You, C.-P. Hsu, J. Am. Chem. Soc.
2005, 127, 66.
[26] X. Zhan, C. Risko, F. Amy, C. Chan, W. Zhao, S. Barlow, A. Kahn,
J.-L. BrØdas, S. R. Marder, J. Am. Chem. Soc. 2005, 127, 9021.
[27] F. Garnier, G. Horowitz, D. Fichou, A. Yassar, Synth. Met. 1996, 81,
163.
[28] H. E. Katz, Z. Bao, J. Phys. Chem. B 2000, 104, 671.
[29] R. C. Haddon, X. Chi, M. E. Itkis, J. E. Anthony, D. L. Eaton, T.
Siegrist, C. C. Mattheus, T. T. M. Palstra, J. Phys. Chem. B 2002, 106,
8288.
[48] W. Y. Gao, A. Kahn, J. Appl. Phys. 2003, 94, 359.
[49] A. Kahn, N. Koch, W. Gao, J. Polym. Sci. Part B 2003, 41, 2529–
2548.
[50] D. Cahen, A. Kahn, Adv. Mater. 2003, 15, 271.
[51] These values are taken from J. E. Huheey, E. A. Keiter, R. L.
Keiter, Inorganic Chemistry: Principles of Structure and Reactivity,
4th ed., Harper Collins, New York, 1993, p. 187, in which values ac-
cording to a variety of other scales are also given.
[52] R. Dudde, B. Reihl, A. Otto, J. Chem. Phys. 1990, 92, 3930.
[53] The competing inductive and resonance effects of F and Cl can of
course be gauged by Hammett coefficients. See for example J.
March, Advanced Organic Chemistry, 3rd ed., Wiley, New York,
1985.
[54] D. D. Kenning, K. A. Mitchell, T. R. Calhoun, M. R. Funfar, D. J.
Sattler, S. C. Rasmussen, J. Org. Chem. 2002, 67, 9073.
[55] R. G. Kultyshev, G. K. S. Prakash, G. A. Olah, J. W. Faller, J. Parr,
Organometallics 2004, 23, 3184.
[56] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
[30] Y. Olivier, V. Lemaur, J. L. BrØdas, J. Cornil, J. Phys. Chem. A 2006,
110, 6356.
[31] A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M.
Watson, K. Müllen, H. D. Chanzy, H. Sirringhaus, R. H. Friend,
Adv. Mater. 2003, 15, 495.
[32] Z. An, J. Yu, S. C. Jones, S. Barlow, S. Yoo, B. Domercq, P. Prins,
L. D. A. Siebbeles, B. Kippelen, S. R. Marder, Adv. Mater. 2005, 17,
2580.
[57] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
[58] C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
[59] Gaussian98 (RevisionA.11), M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski,
J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M.
Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J.
Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli,
C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q.
Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari,
[33] K. O. Sylvester-Hvid, J. Phys. Chem. B 2006, 110, 2618.
3546
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2007, 13, 3537 – 3547