10.1002/anie.201916529
Angewandte Chemie International Edition
COMMUNICATION
[11] X. Wang, C. Bommier, Z. Jian, Z. Li, R. S. Chandrabose, I. A.
Rodriguez-Perez, P. A. Greaney, X. Ji, Angew. Chem. Int. Ed. 2017, 56,
2909-2913.
[12] a) V. Raab, E. Gauchenova, A. Merkoulov, K. Harms, J. Sundermeyer, B.
Kovaꢀević, Z. B. Maksić, J. Am. Chem. Soc. 2005, 127, 15738-15743; b) M. A.
Zirnstein, H. A. Staab, Angew. Chem. Int. Ed. 1987, 26, 460-461.
[13] C. Peng, G.-H. Ning, J. Su, G. Zhong, W. Tang, B. Tian, C. Su, D. Yu, L. Zu, J.
Yang, M.-F. Ng, Y.-S. Hu, Y. Yang, M. Armand, K. P. Loh, Nat. Energy 2017,
2, 17074.
[14] M. H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. P. Baboo, S. H. Choi, J.
Kim, Chem. Mater. 2015, 27, 3609-3620.
[15] a) B. Tian, Z. Ding, G.-H. Ning, W. Tang, C. Peng, B. Liu, J. Su, C. Su, K. P.
Loh, Chem. Commun. 2017, 53, 2914-2917; b) M. Takahashi, Y. Ishikawa, J.-i.
Nishizawa, H. Ito, Chem. Phys. Lett. 2005, 401, 475-482.
combining various ex situ characterization techniques and DFT
calculations. The pyrazine nitrogen atoms with negative MESP
are the active sites of H+ ions uptake in HATN and six H+ ions will
react with these pyrazine nitrogen atoms by reversible structural
evolution from HATN to HATN-2H, HATN-4H and HATN-6H,
respectively. Owing to the fast kinetics of H+ uptake/removal
behavior, the Zn/HATN batteries not only exhibit an initial
discharge capacity of 405 mAh g-1 at 100 mA g-1, but also display
excellent rate performance, and long cycle stability with a high
capacity retention of 93.3% after 5000 cycles at 5 A g-1. Proton
insertion chemistry will broaden the horizons of aqueous
Zn/organic batteries and provide a strategy to enhance the
electrochemical performance of aqueous ZIBs.
[16] V. Krishnakumar, N. Prabavathi, Spectrochim. Acta. A. 2010, 77, 238-247.
[17] J. Hong, M. Lee, B. Lee, D. H. Seo, C. B. Park, K. Kang, Nat. Commun. 2014,
5, 5335.
[18] L. Liu, L. Miao, L. Li, F. Li, Y. Lu, Z. Shang, J. Chen, J. Phys. Chem. Lett.
2018, 9, 3573-3579.
[19] J. Lee, H. Kim, M. J. Park, Chem. Mater. 2016, 28, 2408-2416.
Acknowledgements
This work was supported by National Key R&D Program of China
(2017YFA0206701), National Natural Science Foundation of
China (51822205 and 21875121), China Postdoctoral Science
Foundation (2019M650045), Ministry of Education of China
(B12015) and Natural Science Foundation of Tianjin
(18JCJQJC46300).
Keywords: Zn ion battery • organic electrode • proton •
high-capacity • long-cycle
[1]
[2]
a) J. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y.
Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi,
A. C. Marschilok, L. A. Archer, Science 2019, 366, 645-648; b) H. Qiu, X. Du,
J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, G. Cui, Nat.
Commun. 2019, 10, 5374; c) M. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct.
Mater. 2018, 28, 1802564; d) H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu, P.
Fang, Y. Tong, X. Lu, Adv. Mater. 2019, 31, 1904948.
a) J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Adv.
Mater. 2018, 30, 1800762; b) F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J.
Chen, Nat. Commun. 2018, 9, 1656; c) C. Xia, J. Guo, P. Li, X. Zhang, H. N.
Alshareef, Angew. Chem. Int. Ed. 2018, 57, 3943-3948; d) M. H. Alfaruqi, V.
Mathew, J. Song, S. Kim, S. Islam, D. T. Pham, J. Jo, S. Kim, J. P. Baboo, Z.
Xiu, K.-S. Lee, Y.-K. Sun, J. Kim, Chem. Mater. 2017, 29, 1684-1694; e) F.
Wan, Z. Niu, Angew. Chem. Int. Ed. 2019, 58, 16358-16367.
[3]
[4]
a) T. Wei, Q. Li, G. Yang, C. Wang, Adv. Energy Mater. 2019, 9, 1901480; b)
J. Ding, Z. Du, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Adv. Mater. 2019,
31, 1904369; c) F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang, L. Song, Z.
Niu, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 7062-7067.
a) D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey, S.-Z. Qiao,
Angew. Chem. Int. Ed. 2019, 58, 7823-7828; b) M. Li, Q. He, Z. Li, Q. Li, Y.
Zhang, J. Meng, X. Liu, S. Li, B. Wu, L. Chen, Z. Liu, W. Luo, C. Han, L. Mai,
Adv. Energy Mater. 2019, 9, 1901469; c) C. Xu, B. Li, H. Du, F. Kang, Angew.
Chem. Int. Ed. 2012, 51, 933-935.
[5]
[6]
a) Q. Yang, F. Mo, Z. Liu, L. Ma, X. Li, D. Fang, S. Chen, S. Zhang, C. Zhi,
Adv. Mater. 2019, 31, 1901521; b) L. Zhang, L. Chen, X. Zhou, Z. Liu, Adv.
Energy Mater. 2015, 5, 1400930.
a) Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang, Y. Xia, Angew. Chem. Int. Ed.
2018, 57, 11737-11741; b) Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu, Y. Li, L.
Li, J. Hu, H. Ma, J. Chen, Sci. Adv. 2018, 4, eaao1761; c) D. Kundu, P.
Oberholzer, C. Glaros, A. Bouzid, E. Tervoort, A. Pasquarello, M.
Niederberger, Chem. Mater. 2018, 30, 3874-3881; d) H. Y. Shi, Y. J. Ye, K.
Liu, Y. Song, X. Sun, Angew. Chem. Int. Ed. 2018, 57, 16359-16363.
a) H. Glatz, E. Lizundia, F. Pacifico, D. Kundu, ACS Appl. Energy Mater.
2019, 2, 1288-1294; b) F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu, J. Chen,
Adv. Funct. Mater. 2018, 28, 1804975; c) A. Khayum, M. Ghosh, V.
Vijayakumar, A. Halder, M. Nurhuda, S. Kumar, M. Addicoat, S. Kurungot, R.
Banerjee, Chem. Sci. 2019, 10, 8889-8894; d) S. Huang, F. Wan, S. Bi, J. Zhu,
Z. Niu, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 4313-4317.
[7]
[8]
[9]
Y. Lu, Q. Zhang, L. Li, Z. Niu, J. Chen, Chem 2018, 4, 2786-2813.
X. Wu, J. J. Hong, W. Shin, L. Ma, T. Liu, X. Bi, Y. Yuan, Y. Qi, T. W. Surta,
W. Huang, J. Neuefeind, T. Wu, P. A. Greaney, J. Lu, X. Ji, Nat. Energy 2019,
4, 123-130.
[10] a) H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X.
Li, P. Bhattacharya, K. T. Mueller, J. Liu, Nat. Energy 2016, 1, 16039; b) W.
Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu,
C. Wang, J. Am. Chem. Soc. 2017, 139, 9775-9778; c) J. Huang, Z. Wang, M.
Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Nat Commun 2018, 9, 2906; d) Y. Jin,
L. Zou, L. Liu, M. H. Engelhard, R. L. Patel, Z. Nie, K. S. Han, Y. Shao, C.
Wang, J. Zhu, H. Pan, J. Liu, Adv. Mater. 2019, 31, 1900567.
This article is protected by copyright. All rights reserved.