Journal of the American Chemical Society
Page 8 of 9
REFERENCES33
1
2
3
4
5
6
7
8
9
18
1 (a) Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76. (b) Arashiba,
K.; Miyake, Y.; Nishibayashi, Y. Nat. Chem. 2011, 3, 120. (c) Anderson,
J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84. (d) Imayoshi, R.;
Tanaka, H.; Matsuo, Y.; Yuki, M.; Nakajima, K.; Yoshizawa, K.; Nishi-
bayashi, Y. Angew. Chem. Int. Ed. 2015, 21, 8905. (e) Ung, G.; Peters, J.
C. Angew. Chem. Int. Ed. 2015, 54, 532. (f) Kuriyama, S.; Arashiba, K.;
Nakajima, K.; Matsuo, Y.; Tanaka, H.; Ishii, K.; Yoshizawa, K.; Nishi-
bayashi, Y. Nat. Commun. 2016, 7, 12181. (g) Hill, P. J.; Doyle, L. R.;
Crawford, A. D.; Myers, W. K.; Ashley, A. E. J. Am. Chem. Soc. 2016,
138, 13521. (h) Buscagan, T. M.; Oyala, P. H.; Peters, J. C. Angew. Chem.
Int. Ed. 2017, 56, 6921. (i) Wickramasinghe, L. A.; Ogawa, T.; Schrock,
R. R.; Müller, P. J. Am. Chem. Soc. 2017, 139, 9132. (j) Fajardo Jr., J.;
Peters, J. C. J. Am. Chem. Soc. 2017, 139, 16105.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010,
132, 154104.
19 (a) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev.
Lett. 2003, 91, 146401. (b) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem.
Phys. 2005, 7, 3297.
20
For the P3BFeNxHy and related systems, this combination of functional
and basis sets is able to reproduce not only crystallographic details, but
also experimentally measured singlet-triplet gaps, reduction potentials,
and N–H BDFE’s, as described in reference 16.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
21
In all cases where the basicity of P3BFeNxHy intermediates has been
evaluated, they are predicted to be readily protonated by the anilinium
triflate acids employed (see SI for details).
22 DFT calculations suggest that almost all of the P3BFeNxHy intermediates
on the N2RR pathway have N–H bonds stronger than the C–H bond in
Cp*(exo-η4-C5Me5H)Co+, suggesting that, at least thermodynamically,
the formation of these N–H bonds by PCET is favorable. See reference
2 (a) Shipman, M. A.; Symes, M. D. Catal. Today 2017, 286, 57. (b) Kyr-
iakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Catal.
Today 2017, 286, 2.
3 (a) McKone, J. R.; Marinescu, S. C.; Brunschwig, B. S.; Winkler, J. R.;
Gray, H. B. Chem. Sci. 2014, 5, 865. (b) Bullock, R. M.; Appel, A. M.;
Helm, M. L. Chem. Commun. 2014, 50, 3125.
23 The reactivity of ring-functionalized Cp* rings has been discussed pre-
viously in the context of electrocatalytic HER by 4d and 5d metals, but
via a mechanism involving hydride transfer, rather than via PCET. See:
(a) Pitman, C. L.; Finster, O. N. L.; Miller, A. J. M. Chem. Commun.
2016, 52, 9105. (b) Quintana, L. M. A.; Johnson, S. I.; Corona, S. L.;
Villatoro, W.; Goddard, W. A.; Takase, M. K.; VanderVelde, D. G.; Win-
kler, J. R.; Gray, H. B.; Blakemore, J. D. Proc. Natl. Acad. Sci. 2016, 113,
6409. (c) Peng, Y.; Ramos-Garcés, M. V.; Lionetti, D.; Blakemore, J. D.
Inorg. Chem. 2017, 56, 10824.
4
(a) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem.
Soc. Rev. 2009, 38, 89. (b) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.;
Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.;
Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A.
R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.;
Thauer, R. K.; Waldrop, G. L. Chem. Rev. 2013, 113, 6621. (c) Francke,
R.; Schille, B.; Roemelt, M. Chem. Rev. 2018, DOI:
10.1021/acs.chemrev.7b00459.
24
Productive N–H bond formation via PCET with models of late-stage
5
Zhang, W.; Lai, W.; Cao, R. Chem. Rev. 2017, 117, 3717.
N2 fixation intermediates (i.e., M≡N or M–NH2) has been observed pre-
viously: (a) Scepaniak, J. J.; Young, J. A.; Bontchev, R. P.; Smith, J. M.
Angew. Chem. Int. Ed. 2009, 48, 3158. (b) Pappas, I.; Chirik, P. J. J. Am.
Chem. Soc. 2015, 137, 3498. (c) MacLeod, K. C.; McWilliams, S. F.;
Mercado, B. Q.; Holland, P. L. Chem. Sci. 2016, 7, 5736. (d) Lindley, B.
M.; Bruch, Q. J.; White, P. S.; Hasanayn, F.; Miller, A. J. M. J. Am. Chem.
Soc. 2017, 139, 5305.
6 (a) Pickett, C. J.; Talarmin, J. Nature 1985, 317, 652. (b) Al-Salih, T. I.;
Pickett, C. J. J. Chem. Soc. Dalton Trans. 1985, 1255. (c) Pickett, C. J.;
Ryder, K. S.; Talarmin, J. J. Chem. Soc. Dalton Trans. 1986, 1453. (d)
Del Castillo, T. J.; Thompson, N. B.; Peters, J. C. J. Am. Chem. Soc. 2016,
138, 5341.
7
In this context, a recent report in which the bioelectrosynthesis of am-
25 Marcus, R. A. J. Chem. Phys. 1956, 24, 966.
monia by nitrogenase is coupled to H2 oxidation is also noteworthy: Mil-
ton, R. D.; Cai, R.; Abdellaoui, S.; Leech, D.; De Lacey, A. L.; Pita, M.;
Minteer, S. D. Angew. Chem. Int. Ed. 2017, 56, 2680.
26
Iordanova, N.; Decornez, H.; Hammes-Schiffer, S. J. Am. Chem. Soc.
2001, 123, 3723.
27
8
We have assumed a PT-ET mechanism in which ET is rate limiting
Very recently there was a report of electrolytic NH3 synthesis by
based on significantly lower reorganization energies and barriers for PT
compared to ET. See SI for full description.
Cp2TiCl2. Although rates and Faradaic efficiencies are discussed, no
yields of NH3 are reported: Jeong, E.-Y.; Yoo, C.-Y.; Jung, C. H.; Park,
J. H.; Park, Y. C.; Kim, J.-N.; Oh, S.-G.; Woo, Y.; Yoon, H. C. ACS Sus-
tainable Chem. Eng. 2017, 5, 9662.
28
Koelle, U.; Infelta, P. P.; Graetzel, M. Inorg. Chem. 1988, 27, 879.
Call, A.; Casadevall, C.; Acuna-Pares, F.; Casitas, A.; Lloret-Fillol, J.
29
9
Chem. Sci. 2017, 8, 4739.
Chalkley, M. J.; Del Castillo, T. J.; Matson, B. D.; Roddy, J. P.; Peters,
30
Very recently there has been a study of electrocatalytic N2RR under
J. C. ACS Cent. Sci. 2017, 3, 217.
10 In some cases, the pKa of a particular anilinium acid was already known
in THF in which case this value was used. In cases where the pKa has not
been reported in THF a literature procedure was used to appropriately
convert the pKa from the solvent in which it was measured into a value
for THF. See SI for details.
ambient conditions in ionic liquids with Fe nanoparticles that reports
FE’s for NH3 as high as 60%: Zhou, F.; Azofra, L. M.; Ali, M.; Kar, M.;
Simonov, A. N.; McDonnell-Worth, C.; Sun, C.; Zhang, X.; MacFar-
lane, D. R. Energy Environ. Sci. 2017, 10, 2516.
31 We believe that the quasi-reversible nature of the electrochemical cou-
ple results from a high reorganization energy; the P3BFeN2 couple is
0/−
11
Consistent with this observation is that efforts to use other weak, non-
fully reversible using chemical reagents: Moret, M.-E.; Peters, J. C. An-
gew. Chem. Int. Ed. 2011, 50, 2063.
anilinium acids such as benzylammonium triflate (pKa in THF of 13.2)
and collidinium triflate (pKa in THF of 11.2) also led to no observed NH3
formation.
32
Due to the extensive diffusion between the working and auxiliary
12
chambers, production of an oxidation product which can diffuse to the
working electrode and be re-reduced at −2.1 V vs Fc+/0 leads to excessive,
nonproductive redox cycling between chambers over the course of the
lengthy CPE experiments. Sodium metal as an electrode material provides
a suitable solution to this technical challenge, as the product of its oxida-
tion (Na+) is stable to the CPE conditions.
These results are also consistent with our previous observation of
[Ph2NH2][OTf] (pKa in THF of 3.2) yielding 72 ± 3 % NH3. See reference
13
Pham, D. N.; Burgess, B. K. Biochemistry 1993, 32, 13275.
In some other reports on N2RR by molecular catalysts, efficiencies for
14
NH3 have been reported for several acids, but typically these acids span
only a small pKa range, electron yields are inconsistent, and variations are
not explained. For a representative example, see Reference 1b.
15 Anderson, J. S.; Cutsail III, G. E.; Rittle, J.; Connor, B. A.; Gunderson,
W. A.; Zhang, L.; Hoffman, B. M.; Peters, J. C. J. Am. Chem. Soc. 2015,
137, 7803.
33 Henke, W. C.; Lionetti, D.; Moore, W. N. G.; Hopkins J. A.; Day, V.
W.; Blakemore, J.D. ChemSusChem. 2017, 10, 4589.
16
Matson, B. D.; Peters, J. C. ACS Catal. 2018, 8, 1448.
Recent results on a Cr–N2 species also support the role of PCET in the
17
formation of early-stage N2 fixation intermediates in the presence of col-
lidinium triflate and a cobaltocene: Kendall, A. J.; Johnson, S. I.; Bullock,
R. M.; Mock, M. T. J. Am. Chem. Soc. 2018, 140, 2528.
8
ACS Paragon Plus Environment