other molecules.4 In this structure, 66% of the volume is
accessible to guests,6,7 which occupy interconnected channels
with cross sections up to 9 × 5 Å2 in diameter.8 The high
porosity of the network is noteworthy because the pen-
taerythrityl tetraphenyl ether core is flexible and can adopt
various nontetrahedral geometries, yet a close-packed guest-
free structure is not favored.
Table 1. Reactions of Dipentaerythrityl Hexatosylate (8) with
Phenols
Tecton 1 can be considered to be the progenitor of a family
of self-associating dendrimers derived from the pentaeryth-
rityl tetraphenyl ether core.9,10 Further dendritic growth offers
promising new multiarmed cores for supramolecular con-
struction, including hexaphenyl ether 3 (derived from di-
pentaerythritol), octaphenyl ether 4 (derived from tripen-
taerythritol), decaphenyl ether 5 (derived from tetrapenta-
erythritol), and dodecaphenyl ether 6 (derived from pentapenta-
erythritol).11-13 Dendritic tectons with such cores are exciting
targets for synthesis for the following reasons: (1) The
number of sticky sites per tecton will increase with each
generation, thereby increasing the number of intermolecular
interactions and strengthening the resulting networks. (2) The
density of sticky sites on the periphery of each tecton is
expected to increase with each generation,9,10 thereby reduc-
ing the number of neighboring tectons not held in positions
imposed by directional forces. (3) The porosity of materials
built from dendritic tectons should be enhanced because it
will have dual origins, one corresponding to intertectonic
spaces (as in normal tectonic networks) and the other
corresponding to intratectonic spaces (due to the character-
entry
phenol
product
yield (%)
1
2
3
4
5
6
7
X ) 4-Br
X ) 3-Br
X ) 2-Br
X ) 4-NO2
X ) 4-CN
X ) 3-CN
X ) 4-CHO
9
10
11
12
13
14
15
79
72
68
85
86
76
75
istically low density of the dendritic cores of the tectons
themselves).9,10,14 (4) The crystallinity of progenitor 1 sug-
gests that dendritic derivatives of higher generations may
also yield single crystals suitable for X-ray diffraction,
whereas conventional dendrimers without strong intermo-
lecular interactions normally resist crystallization because
they are conformationally flexible and globular.15,16
To permit an initial test of these hypotheses, we synthe-
sized diverse hexasubstituted derivatives of dipentaerythrityl
hexaphenyl ether (3), including tecton 7, in which diami-
(6) The percentage of volume accessible to guests was estimated by the
PLATON program,7 using standard parameters.2-5
(7) Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht
University: Utrecht, The Netherlands, 2001. van der Sluis, P.; Spek, A. L.
Acta Crystallogr. 1990, A46, 194.
(8) The dimensions of a channel in a particular direction correspond to
the cross section of an imaginary cylinder that could be passed through the
hypothetical open network in the given direction in contact with the van
der Waals surface. Such values are inherently conservative because (1) they
measure the cross section at the most narrow constriction, and (2) they
systematically underestimate the sizes of channels that are not uniform and
linear.
(9) Newkome, G. R.; Moorefield, C. N.; Vo¨gtle, F. Dendrimers and
Dendrons: Concepts, Syntheses, Applications; VCH: Weinheim, Germany,
2001.
(10) For other recent reviews of the subject of dendrimers, see: Grayson,
S. M.; Fre´chet, J. M. J. Chem. ReV. 2001, 101, 3819. Chow, H.-F.; Leung,
C.-F.; Wang, G.-X.; Zhang, J. Top. Curr. Chem. 2001, 217, 1. Zimmerman,
S. C.; Lawless, L. J. Top. Curr. Chem. 2001, 217, 95. Vo¨gtle, F.;
Gestermann, S.; Hesse, R.; Schwierz, H.; Windisch, B. Prog. Polym. Sci.
2000, 25, 987.
(11) For recent use of derivatives of dipentaerythritol in materials science,
see: Shukla, A. A.; Bae, S. S.; Moore, J. A.; Barnthouse, K. A.; Cramer,
S. M. Ind. Eng. Chem. Res. 1998, 37, 4090.
(12) For other recent uses of derivatives of dipentaerythritol in materials
science, see: Biela, T.; Duda, A.; Rode, K.; Pasch, H. Polymer 2003, 44,
1851. Gigant, K.; Posset, U.; Schottner, G.; Baia, L.; Kiefer, W.; Popp, J.
J. Sol-Gel Sci. Technol. 2003, 26, 369. Mayadunne, R. T. A.; Moad, G.;
Rizzardo, E. Tetrahedron Lett. 2002, 43, 6811. Rohr, T.; Knaus, S.; Gruber,
H.; Sherrington, D. C. Macromolecules 2002, 35, 97. Kader, M. A.;
Bhowmick, A. K.; Inoue, T.; Chiba, T. J. Mater. Sci. 2002, 37, 1503.
Kaczmarek, H.; Ołdak, D.; Szalla, A. J. Appl. Polym. Sci. 2002, 86, 3725.
Huang, H.; Zhang, J.-Z.; Shi, W.-F. J. Appl. Polym. Sci. 2001, 80, 499.
Joziasse, C. A. P.; Grablowitz, H.; Pennings, A. J. Macromol. Chem. Phys.
2000, 201, 107. Bunning, T. J.; Kirkpatrick, S. M.; Natarajan, L. V.;
Tondiglia, V. P.; Tomlin, D. W. Chem. Mater. 2000, 12, 2842. Menger, F.
M.; Migulin, V. A. J. Org. Chem. 1999, 64, 8916.
notriazine groups are attached to all six arms of the core.
Our syntheses are similar to those used previously to make
analogous derivatives of pentaerythrityl tetraphenyl ether (2).4
Base-induced reactions of phenols with the known dipen-
taerythrityl hexatosylate (8)11,17 (K2CO3/DMF/∆) provided
previously unknown derivatives 9-15 in good yields (Table
1). In this way, various substituted six-armed cores of
potential utility in molecular and supramolecular construction
can be obtained conveniently in a single step.
(14) For recent reviews of dendritic encapsulation, see: Gorman, C. B.;
Smith, J. C. Acc. Chem. Res. 2001, 34, 60. Hecht, S.; Fre´chet, J. M. J.
Angew. Chem., Int. Ed. 2001, 40, 74.
(15) For structural studies of derivatives of dipentaerythritol by X-ray
crystallography, see: Na¨ttinen, K. I.; Rissanen, K. Cryst. Growth Des. 2003,
3, 339.
(16) For other recent structural studies of dendritic molecules by single-
crystal X-ray diffraction, see: Bauer, R. E.; Enkelmann, V.; Wiesler, U.
M.; Berresheim, A. J.; Mu¨llen, K. Chem. Eur. J. 2002, 8, 3858. Ranganathan,
D.; Kurur, S.; Gilardi, R.; Karle, I. L. Biopolymers 2000, 54, 289. Friedmann,
G.; Guilbert, Y.; Wittmann, J. C. Eur. Polym. J. 1999, 35, 1097.
(17) For the structure of hexatosylate 8, see the Supporting Information.
(13) Dipentaerythritol and tripentaerythritol are commercially available
and inexpensive. For preparations of tetrapentaerythritol and pentapen-
taerythritol, see: Padias, A. B.; Hall, H. K., Jr.; Tomalia, D. A.; McConnell,
J. R. J. Org. Chem. 1987, 52, 5305. Suchanec, R. R. Anal. Chem. 1965,
37, 1361.
4788
Org. Lett., Vol. 5, No. 25, 2003