Langmuir
Article
the SLS data on a log−log scale and then performing a nonlinear fit,
(16) Hamley, I. W. Introduction to Soft Matter: Synthetic and Biological
Self-Assembling Materials; John Wiley and Sons: New York, 2007.
(17) Zhao, X. B.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H. H.; Hauser, C.
A. E.; Zhang, S. G.; Lu, J. R. Molecular self-assembly and applications
of designer peptide amphiphiles. Chem. Soc. Rev. 2010, 39, 3480.
(18) Hamley, I. W. Self-assembly of amphiphilic peptides. Soft Matter
2011, 7, 4122.
(19) Ryan, D. M.; Doran, T. M.; Anderson, S. B.; Nilsson, B. L. Effect
of C-terminal modification on the self-assembly and hydrogelation of
fluorinated Fmoc-Phe derivatives. Langmuir 2011, 27, 4029.
(20) Debnath, S.; Shome, A.; Das, D.; Das, P. K. Hydrogelation
through self-assembly of Fmoc-peptide functionalized cationic
amphiphiles: Potent antibacterial agent. J. Phys. Chem. B 2010, 114,
4407.
(21) Cheng, G.; Castelletto, V.; Moulton, C. M.; Newby, G. E.;
Hamley, I. W. Hydrogelation and self-assembly of Fmoc-tripeptides:
Unexpected influence of sequence on self-assembled fibril structure,
and hydrogel modulus and anisotropy. Langmuir 2010, 26, 4990.
(22) Smith, A. M.; Williams, R. J.; Tang, C.; Coppo, P.; Collins, R. F.;
Turner, M. L.; Saiani, A.; Ulijn, R. V. Fmoc-diphenylalanine self
assembles to a hydrogel via a novel architecture based on π−π
interlocked β-sheets. Adv. Mater. 2008, 20, 37.
(23) Jayawarna, V.; Ali, M.; Jowitt, T. A.; Miller, A. F.; Saiani, A.;
Gough, J. E.; Ulijn, R. V. Nanostructured hydrogels for three-
dimensional cell culture through self-assembly of fluorenylmethox-
ycarbonyl−dipeptides. Adv. Mater. 2006, 18, 611.
which provides a scaling factor called the fractal dimension.
ASSOCIATED CONTENT
* Supporting Information
■
S
Turbidity data, AFM images of the gels with different salts.
Fluorescence emission spectra of Fmoc-YL gels after the heat/
cool cycle and open and rigid mass fractal structure of the
enzyme in the presence of kosmotropic and chaotropic salts.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the EPSRC, HFSP, ERC (Starting Grant EMERgE),
and Leverhulme Trust (Leadership Award) (U.K.) for funding.
The material is based on research sponsored by the Air Force
Laboratory, under Agreement FA9550-11-1-0263.
(24) Holmes, T. C.; de Lacalle, S.; Su, X.; Liu, G.; Rich, A.; Zhang, S.
Extensive neurite outgrowth and active synapse formation on self-
assembling peptide scaffold. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,
6728.
(25) Jonkheijm, P.; van der Schoot, P.; Schenning, A. P. H. J.; Meijer,
E. W. Probing the solvent-assisted nucleation pathway in chemical self-
assembly. Science 2006, 313, 80.
REFERENCES
■
(1) Estroff, L. A.; Hamilton, A. D. Water gelation by small organic
molecule. Chem. Rev. 2004, 104, 1201.
(2) Lehn, J. M. Supramolecular ChemistryConcepts and Perspectives;
VCH: Weinheim, Germany, 1995.
(3) Reches, M.; Gazit, E. Casting metal nanowires within discrete
self-assembled peptide nanotubes. Science 2003, 300, 625.
(4) Zhang, S. Fabrication of novel biomaterials through molecular
self-assembly. Nat. Biotechnol. 2003, 21, 1171.
(5) Whitesides, G. M.; Grzybowski, B. A. Self-assembly at all scales.
Science 2002, 295, 2418.
(6) Hirst, A. R.; Roy, S.; Arora, M.; Das, A. K.; Hodson, N.; Murray,
P.; Marshall, S.; Javid, N.; Sefcik, J.; Boekhoven, J.; van Esch, J. H.;
Santabarbara, S.; Ulijn, R. V. Biocatalytic induction of supramolecular
order. Nat. Chem. 2010, 2, 1089.
(7) Williams, R. J.; Smith, A. M.; Collins, R. F.; Hodson, N.; Das, A.
K.; Ulijn, R. V. Enzyme-assisted self-assembly under thermodynamic
control. Nat. Nanotechnol. 2009, 4, 19.
(8) Yang, Z.; Liang, G.; Wang, L.; Xu, B. Using a kinase/phosphatase
switch to regulate a supramolecular hydrogel and forming the
supramolecular hydrogel in vivo. J. Am. Chem. Soc. 2006, 128, 3038.
(9) Yang, Z.; Gu, H.; Fu, D.; Gao, P.; Lam, J. K.; Xu, B. Enzymatic
formation of supramolecular hydrogels. Adv. Mater. 2004, 16, 1440.
(10) Woolfson, D. N.; Ryadnov, M. G. Peptide-based fibrous
biomaterials: Some things old, new and borrowed. Curr. Opin. Chem.
Biol. 2006, 10, 559.
(11) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Peptide−amphiphile
nanofibers: A versatile scaffold for the preparation of self-assembling
materials. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5133.
(12) Silva, G. A.; Czeisler, C.; Niece, K. L.; Beniash, E.; Harrington,
D. A.; Kessler, J. A.; Stupp, S. I. Selective differentiation of neural
progenitor cells by high-epitope density nanofibers. Science 2004, 303,
1352.
(26) Fairman, R.; Åkerfeldt, K. S. Peptides as novel smart materials.
Curr. Opin. Struct. Biol. 2005, 15, 453.
(27) Adams, D. J.; Frith, W. F.; Kirkland, M.; Mullen, L.; Sanderson,
P. A new method for maintaining homogeneity during liquid−
hydrogel transitions using low molecular weight hydrogelators. Soft
Matter 2009, 5, 1856.
(28) Bowerman, C. J.; Nilsson., B. L. A reductive trigger for peptide
self-assembly and hydrogelation. J. Am. Chem. Soc. 2010, 132, 9526.
(29) Hirst, A. R.; Coates, I. A.; Boucheteau, T.; Miravet, J. F.;
Escuder, B.; Castelletto, V.; Hamley, I. W.; Smith, D. K. Low-
molecular-weight gelators: Elucidating the principles of gelation based
on gelator solubility and a cooperative self-assembly model. J. Am.
Chem. Soc. 2008, 130, 9113.
(30) Rodriguez-Ilansola, F.; Miravet, J. F.; Escuder, B. Supra-
molecular gel formation and self-correction induced by aggregation-
driven conformational changes. Chem. Commun. 2009, 209.
(31) Haines, L. A.; Rajagopal, K.; Ozbas, B.; Salick, D. A.; Pochan, D.
J.; Schneider, J. P. Light-activated hydrogel formation via the triggered
folding and self-assembly of a designed peptide. J. Am. Chem. Soc.
2005, 127, 17025.
(32) Matsumoto, S.; Yamaguchi, S.; Ueno, S.; Komatsu, H.; Ikeda,
M.; Ishizuka, K.; Iko, Y.; Tabata, K. V.; Aoki, H.; Ito, S.; Noji, H.;
Hamachi, I. Photo gel−sol/sol−gel transition and its patterning of a
supramolecular hydrogel as stimuli−responsive biomaterials. Chem.
Eur. J. 2008, 14, 3977.
(33) Yang, Z.; Liang, G.; Xu, B. Enzymatic hydrogelation of small
molecules. Acc. Chem. Res. 2008, 41, 315.
(34) Ulijn, R. V. Enzyme-responsive materials: A new class of smart
biomaterials. J. Mater. Chem. 2006, 16, 2217.
(35) Hofmeister, F. About the science of the effect of salts. Arch. Exp.
(13) De Loos, M. B. L. F.; van Esch, J. H. Design and application of
self-assembled low molecular weight hydrogels. Eur. J. Org. Chem.
2005, 3615.
(14) Van Esch, J. H. We can design molecular gelators, but do we
understand them? Langmuir 2009, 25, 8392.
Pathol. Pharmakol. 1888, 24, 247.
(36) Bauduin, P.; Renoncourt, A.; Touraud, D.; Kunz, W.; Ninham,
B. W. Hofmeister effect on enzymatic catalysis and colloidal structures.
Curr. Opin. Colloid Interface Sci. 2004, 9, 43.
(15) Coates, I. A.; Smith, D. K. Hierarchical assemblyDynamic
gel−nanoparticle hybrid soft materials based on biologically derived
building blocks. J. Mater. Chem. 2010, 20, 6696.
16669
dx.doi.org/10.1021/la303388s | Langmuir 2012, 28, 16664−16670