LETTER
Synthesis of Cannabinol
1111
O
OH
O
O
In conclusion, it was demonstrated that a modified Ull-
mann–Ziegler coupling is a very useful key step in the
synthesis of dibenzo[b,d]pyran natural products in general
and CBN-type cannabinoids in particular. To show this,
several model key intermediates with a substitution pat-
tern resembling cannabinol were prepared. The com-
pounds were obtained in good to excellent yields starting
form easily accessible starting materials. A variety of
groups may be introduced to the resorcinol moiety, for ex-
ample, by cuprate-mediated benzylic substitution or by
subjecting a substituted benzaldehyde to a combination of
the Wittig olefination and a hydrogenation step. The other
part of the molecule may be derived from a wide range of
commercially available benzoic acids.
Me2SO4, K2CO3
acetone, 60 °C, 4.5 h
87%
HO
OH
O
O
10
NaBH4, MeOH
THF, 70 °C, 2.5 h
93%
OH
Br
PBr3, CH2Cl2, r.t., 2 h
93%
O
O
O
O
11
As a further proof of principle, the procedure was extend-
ed to a synthesis of cannabinol, which was synthesized in
a total yield of 15% over nine steps (longest linear se-
quence of reactions, starting from 3,5-dihydroxybenzoic
acid).
n-Bu2CuLi, THF
–20 °C, 1.5 h
61%
C5H11
References and Notes
O
O
O
O
(1) Martin, B. R.; Lichtman, A. H. Neurobiology of Disease
1998, 5, 447.
12
13
(2) Pertwee, R. G. Euphytica 2004, 140, 73.
Scheme 3 Synthesis of 1,3-dimethoxy-5-pentyl benzene 12
(3) Mechoulam, R. Br. J. Pharmacol. 2005, 146, 913.
(4) Marsicano, G.; Goodenough, S.; Monory, K.; Hermann, H.;
Eder, M.; Cannich, A.; Azad, S. C.; Cascio, M. G.;
Gutiérrez, S. O.; van der Stelt, M.; López-Rodriguez, M. L.;
Casanova, E.; Schütz, G.; Zieglgänsberger, W.; Di Marzo,
V.; Behl, C.; Lutz, B. Science 2003, 302, 84.
O
Ni-Pr2
C5H11
1) BBr3, CH2Cl2
O
OH
–78 °C to 40 °C, 12 h
(5) Eubanks, L. M.; Rogers, C. J.; Beuscher, A. E. IV.; Koob, G.
F.; Olson, A. J.; Dickerson, T. J.; Janda, K. D. Mol.
Pharmacol. 2006, 3, 773.
2) AcOH–toluene (1:1)
110 °C, 5 h
O
O
O
C5H11
51% over 2 steps
15
(6) (a) Tashkin, D. P.; Shapiro, B. J.; Lee, Y. E.; Harper, C. E.
Am. Rev. Respir. Dis 1975, 112, 377. (b) Di Carlo, G.; Izzo,
A. A. Expert Opin. Invest. Drugs 2003, 12, 39. (c) Steffens,
S.; Veillard, N. R.; Arnaud, C.; Pelli, G.; Burger, F.; Staub,
C.; Karsak, M.; Zimmer, A.; Frossard, J.-L.; Mach, F.
Nature 2005, 434, 782. (d) Abrams, D. I.; Jay, C. A.; Shade,
S. B.; Vizoso, H.; Reda, H.; Press, S.; Kelly, M. E.;
Rowbotham, M. C.; Petersen, K. L. Neurology 2007, 68,
515. (e) McAllister, S. D.; Christian, R. T.; Horowitz, M. P.;
Garcia, A.; Desprez, P.-Y. Mol. Cancer Ther. 2007, 6, 2921.
(7) (a) Mackie, K. J. Neuroendocrinol. 2008, 20, 10.
(b) Howlett, A. C. Prostaglandins Other Lipid Mediat.
2002, 68-69, 619–631.
14
MeLi, THF
–78 °C to r.t., 1 h
OH
TFA, CH2Cl2
r.t., 10 min
OH
85%
O
C5H11
HO
HO
C5H11
2
16
(8) Elphick, M. R.; Egertova, M. Philos. Trans. Roy. Soc. B
2001, 356, 381.
Scheme 4 Conversion of biphenyl 14 into CBN
(9) (a) Marriott, K.-S. C.; Huffman, J. W. Curr. Top. Med.
Chem. 2008, 8, 187. (b) Pertwee, R. G. Pharmacol. Ther.
1997, 74, 129.
(10) Mahadevan, A.; Siegel, C.; Martin, B. R.; Abood, M. E.;
Beletskaya, I.; Razdan, R. K. J. Med. Chem. 2000, 43, 3778.
(11) (a) Abood, M. E.; Martin, B. R. Trends Pharmacol. Sci.
1992, 13, 201. (b) Ameri, A. Progress in Neurobiology
1999, 58, 315.
(12) McCallum, N. D.; Yagen, B.; Levy, S.; Mechoulam, R.
Experientia 1975, 31, 520.
(13) Watanabe, K.; Yamaori, S.; Funahashi, T.; Kimura, T.;
Yamamoto, I. Forensic Toxicol. 2006, 24, 80.
(14) Novak, J.; Salemink, C. A. J. Chem. Soc., Perkin Trans. 1
1983, 2867.
In the next step, biaryl 14 was treated with BBr3 to cleave
the methyl ether protecting groups. After hydrolysis with
methanol and aqueous workup, the crude product was
subjected to acidic cyclization to give lactone 15 in 51%
yield over two steps. The cannabinol synthesis was com-
pleted by introducing the geminal methyl groups through
the addition of two equivalents of methyllithium to give
tertiary benzylic alcohol 16, which was cyclized by treat-
ment with trifluoroacetic acid to yield cannabinol (2) in
85% over two steps (Scheme 4).
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 1109–1112