2
40
Russ.Chem.Bull., Int.Ed., Vol. 50, No. 2, February, 2001
Tsentalovich et al.
It is seen that an essential (0.5 Å) elongation of the
This work was financially supported by the Russian
Foundation for Basic Research (Project Nos. 99-03-
32753 and 99-03-33488) and INTAS (Grant 96-1269).
RÑO bond cleaved in the reaction occurs in TS. The
other bond lengths change insignificantly. In addition,
the spin density is substantially redistributed from the
C atom of the carbonyl group to the C atom of the
methylene group. The difference in the electron energies
References
of the TS and initial radical amounts to 37.9 kJ mol1
.
1
. C. Reichardt, Solvents and Solvent Effects in Organic Chem-
istry, VSH, Weinheim, 1990.
Taking into account the difference in energies of zero
vibrations, it is equal to 29.9 kJ mol1, and the differ-
ence in enthalpies is 30.4 kJ mol1, which agrees well
with the activation energy measured by us in the nonpo-
lar solvent hexane (31.5±0.5 kJ mol1).
2. D. Griller and K. U. Ingold, Acc. Chem. Res., 1980, 13, 317.
3. L. Lunazzi, K. U. Ingold, and J. C. Scaiano, J. Phys.
Chem., 1983, 87, 529.
4. N. J. Turro, I. R. Gould, and B. H. Baretz, J. Phys. Chem.,
1
983, 87, 531.
The electron density redistribution changes the di-
5
. G. D. Mendenhall, L. C. Stewart, and J. C. Scaiano, J. Am.
Chem. Soc., 1982, 104, 5109.
30
pole moment from µ = 7.710
µ# = 5.310
C m in the radical to
a
1
30
C m in the TS. The PM3 calculations
6. P. Neta, M. Dizdaroglu, and M. G. Simic, Isr. J. Chem.,
1984, 24, 25.
7. D. V. Avila, C. E. Brown, K. U. Ingold, and J. Lusztyk,
J. Am. Chem. Soc., 1993, 115, 466.
demonstrate a noticeable decrease in the dipole moment
of the TS of decarbonylation. Therefore, taking into
account only electrostatic interactions with the solvent,
an increase in the activation energy with increasing
solvent polarity can be expected. The effect of solvent on
the difference between free solvation energies of the
8
. Yu. P. Tsentalovich, L. V. Kulik, N. P. Gritsan, and A. V.
Yurkovskaya, J. Phys. Chem. A, 1998, 102, 7975.
9
. M. Weber and H. Fischer, J. Am. Chem. Soc., 1999, 121, 7381.
1
0. Yu. P. Tsentalovich and H. Fischer, J. Chem. Soc., Perkin
Trans. 2, 1994, 729.
reactions in hexane ∆G#
and acetonitrile ∆G#
was
ACN
hex
estimated by formula (10). The radius of the initial
radical estimated from the molar volume of phenyl-
11. M. Salzmann, Yu. P. Tsentalovich, and H. Fischer, J. Chem.
Soc., Perkin Trans. 2, 1994, 2119.
acetaldehyde similar in size was accepted as r = 3.20 Å,
12. I. F. Molokov, Yu. P. Tsentalovich, A. V. Yurkovskaya, and
R. Z. Sagdeev, J. Photochem. Photobiol. A: Chemistry, 1997,
a
and that of the transition complex, taking into account
the elongation of the RCO bond, was taken as
r# = 3.40 Å. The obtained value of the difference
1
10, 159.
1
3. J. J. P. Stewart, J. Comp. Chem., 1989, 10, 209; J. J. P.
Stewart, J. Comp. Chem., 1989, 10, 221.
∆
G#
∆G#
= 1.6 kJ mol1 is much lower than the
ACN
hex
14. A. A. Bliznyuk and A. A. Voityuk, Zh. Strukt. Khim., 1986,
7, 190 [J. Struct. Chem. (USSR), 1986, 27 (Engl. Transl.)].
experimentally determined difference in activation ener-
gies of the decarbonylation rate constants in hexane and
acetonitrile (see Table 1). This is due to the imperfection
of the model of point dipole in the spherical cavity.
Unlike estimations by formula (10), the ÐÑÌ model
2
15. A. D. Becke, J. Chem. Phys., 1993, 98, 1372.
16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A.
Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich,
J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi,
B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,
J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J.
Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson,
W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-
Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98,
Revision A.6, Gaussian, Inc., Pittsburgh PA, 1998.
(
Polarized Continuum Model) takes into account a more
realistic shape of the cavity in the solvent and the real
charge distribution in the radical. The calculations by this
model give the difference in free solvation energies of the
transition state and initial phenylacetyl radical in aceto-
nitrile and hexane as ∆G#ACN ∆G#hex = 4.2 kJ mol1
,
which agrees well with the experimental data.
The difference in enthalpies of formation of com-
plexes of the initial radical and TS with a solvent
molecule can be accepted as a measure that character-
izes the influence of formation of hydrogen bonds with
the solvent on the reaction rate constant. The PM3
calculations for the reaction in methanol show that the
heat of formation of a complex with the radical
1
7. S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys., 1981,
55, 117; R. Cammi and J. Tomasi, J. Chem. Phys., 1994,
101, 3888; M. Cossi, V. Barone, R. Cammi, and J. Tomasi,
Chem. Phys. Lett., 1996, 255, 327.
7.2 kJ mol1) is much lower than that of a complex
18. J. C. Dalton and N. J. Turro, Ann. Rev. Phys. Chem., 1970,
21, 499; P. S. Engel, J. Am. Chem. Soc., 1970, 92, 6074;
W. K. Robbins and R. H. Eastman, J. Am. Chem. Soc.,
(
with the TS (12.9 kJ mol1). Therefore, unlike specific
solvation, the formation of hydrogen bonds increases the
decarbonylation rate constant. The calculated effects of
electrostatic interactions with the solvent and formation
of hydrogen bonds are close in value and unlike in sign.
Thus, the quantum-chemical calculations confirm our
hypothesis about the mutual compensation of the contri-
butions of specific and nonspecific solvation to the free
activation energy of decarbonylation in alcohols.
1
970, 92, 6076; N. C. Yang, E. D. Feit, N. N. Nui, N. J.
Turro, and J. C. Dalton, J. Am. Chem. Soc., 1970, 92, 6974.
19. H. Fischer and H. Paul, Acc. Chem. Res., 1987, 20, 200.
20. J.-K. Vollenweider, H. Fischer, J. Hennig, and R. Leuschner,
Chem. Phys., 1985, 97, 217.
Received June 6, 2000;
in revised form September 12, 2000