9220
H. Houte et al. / Tetrahedron Letters 43 (2002) 9217–9220
5910; (c) Banwell, M. G.; Cameron, J. M.; Collis, M. P.;
(d) Horino, H.; Asao, T.; Inoue, N. Bull. Chem. Soc. Jpn.
1991, 64, 183–190.
11. Billington, D. C. The Inositol Phosphates. Chemical Syn-
thesis and Biological Significance; VCH: Weinheim, 1993;
pp. 9–21.
Crisp, G. T.; Gable, R. W.; Hamel, E.; Lambert, J. N.;
Reum, M. E.; Scoble, M. F. Aust. J. Chem. 1991, 44,
705–728; (d) Boger, D. L.; Takahashi, K. J. Am. Chem.
Soc. 1995, 117, 12452–12459; (e) Baldwin, J. E.; Mayweg,
A. V. W.; Neumann, K.; Pritchard, G. J. Org. Lett. 1999,
1, 1933–1935; (f) Boger, D. L.; Ichikawa, S.; Jiang, H. J.
Am. Chem. Soc. 2000, 122, 12169–12173.
12. In the case of 9j, the reaction does not take place by a
SN2% mechanism. This was verified by reacting diiso-
propyl azodicarboxylate, triphenylphosphine, tropolone 6
and 1D-cyclohex-2-enol (synthesized from cyclo-
hexenone, NaBD4 and CeCl3, see: Germal, A.; Luche, J.
L. J. Am. Chem. Soc. 1981, 103, 5454–5459), under the
same conditions. The exclusive product was shown to
possess both the deuterium atom and the ether group on
the same carbon (1H NMR spectrometry).
4. Piettre, S. R.; Hoflack, J.; Ganzhorn, A.; Islam, K.;
Hornsperger, J.-M. J. Am. Chem. Soc. 1997, 119, 3201–
3204.
5. Piettre, S. R.; Andre´, C.; Chanal, M.-C.; Ducep, J.-B.;
Lesur, B.; Piriou, F.; Raboisson, P.; Schelcher, C.; Zim-
mermann, P.; Ganzhorn, A. J. Med. Chem. 1997, 40,
4208–4221.
13. 1H NMR spectra data fully support a complete inversion
of configuration.
6. Substitution reactions of simple or activated halogens by
tropolones under basic conditions: (a) Harrison, R. M.;
Hobson, J. D. J. Chem. Soc., Perkin Trans. 1 1973,
1958–1960; (b) Harrison, R. M.; Hobson, J. D.; Midgley,
A. W. J. Chem. Soc., Perkin Trans. 1 1976, 2403–2407;
(c) Takeshita, H.; Mametsuka, H.; Matsuo, N. Bull.
Chem. Soc. Jpn. 1982, 55, 1137–1139. (d) Bass, R. J.;
Cordon, D. W. Synth. Commun. 1985, 15, 225–228; (e)
Takeshita, H.; Mori, A.; Suizu, H. Bull. Chem. Soc. Jpn.
1987, 60, 1429–1432; (f) Mori, A.; Goto, Y.; Takeshita,
H. Bull. Chem. Soc. Jpn. 1987, 60, 2497–2501; (g) Naka-
mura, A.; Kubo, K.; Ikeda, Y.; Mori, H.; Takeshita, H.
Bull. Chem. Soc. Jpn. 1994, 67, 2803–2807; (h) Zong-
Wen, L.; Zhi-Hong, L.; Zhong-Tian, J.; Imafuku, K.
Biosci. Biotech. Biochem. 1996, 60, 2095–2096; (i) Tam-
burlin-Thumin, I.; Crozet, M. P.; Barrie`re, J.-C. Synthesis
1999, 1149–1154.
7. Substitution reactions of a tropolonyl halide by an alco-
holate: (a) Takase, K. Bull. Chem. Soc. Jpn. 1964, 37,
1288–1292; (b) Takase, K. Bull. Chem. Soc. Jpn. 1964, 37,
1295–1297; (c) Harrison, R. M.; Hobson, J. D. J. Chem.
Soc., Perkin Trans. 1 1973, 1958–1960; (d) Pietra, F. J.
Chem. Soc., Chem. Commun. 1974, 544–545; (e) Cabrino,
R.; Cavazza, M.; Pietra, F. J. Chem. Soc., Chem. Com-
mun. 1976, 721–722; (f) Cavazza, M.; Cabrino, R. Syn-
thesis 1977, 298–299.
8. Condensation reactions: (a) Takeshita, H.; Mametsuka,
H. J. Can. Chem. 1984, 2035–2040; (b) Takeshita, H.;
Mametsuka, H.; Motomura, H. J. Heterocyclic Chem.
1986, 23, 1211–1214.
9. Hughes, D. L. In Organic Reactions; Paquette, L., Ed.;
John Wiley & Sons: New York, 1992; Vol. 42, pp.
337–656.
10. (a) Horino, H.; Inoue, N.; Asao, T. Tetrahedron Lett.
1981, 22, 741–744; (b) Takeshita, H.; Mori, A. Synthesis
1986, 578–579; (c) Takeshita, H.; Mori, A.; Kusaba, T.;
Watanabe, H. Bull. Chem. Soc. Jpn. 1987, 60, 4325–4333;
14. A 1:1 mixture of diastereomeric alcohols 9o was con-
verted into a 1:1 mixture of tropolonyl ethers 10o.
15. Bis-O-alkylated (di)hydroxytropolones might thus also
constitue useful analogues of diesterified phosphates.
16. Representative procedure for ether 10h: pure diisopropyl
azodicarboxylate (303 mg, 1.5 mmol) was added at room
temperature to a stirring solution of tropolone 6a (140
mg, 0.5 mmol), triphenylphosphine (393 mg, 1.5 mmol)
and alcohol 9h (697 mg, 1.5 mmol) in diethyl ether (10
mL). Stirring was continued for 1 h, after which period of
time the mixture was diluted with dichloromethane (10
mL). The organic phase is washed with aqueous HCl (10
mL of a 1 M solution), dried over magnesium sulfate and
filtered. Evaporation of the volatiles under reduced pres-
sure leaves a residue which is purified by chromatography
over silica and eluted with a mixture of ethyl acetate/
heptane (30:70) to deliver the desired product 10h as a
yellowish solid (272 mg, 75%). Mp=106–107°C. [h]D=
+47.6 (CH2Cl2, c=2.1, 21°C). IR (KBr) w 3455, 1608,
1590, 1559, 1554, 1450, 1358, 1330, 1294, 816 cm−1 1H
.
NMR (300 MHz, CDCl3) l=7.86 (dd, 1H, J=0.8, 9.4
Hz), 7.41 (dd, 1H, J=0.8, 11.7 Hz), 7.29–7.18 (m, 15H),
6.33 (dd, 1H, J=9.4, 11.7 Hz), 4.91 (d, 1H, J=10.5 Hz),
4.84 (d, 1H, J=10.5 Hz), 4.76 (d, 1H, J=10.5 Hz), 4.72
(d, 1H, J=11.8 Hz), 4.61 (d, 1H, J=10.5 Hz), 4.57 (d,
1H, J=11.8 Hz), 4.56 (dd, 1H, J=3.8, 12.0 Hz), 4.47 (d,
1H, J=3.4 Hz), 4.40 (dd, 1H, J=1.9, 12.0 Hz), 3.94 (dd,
1H, J=8.7, 9.6 Hz), 3.77 (ddd, 1H, J=1.9, 3.8, 9.8 Hz),
3.68 (dd, 1H, J=8.7, 9.8 Hz), 3.27 (s, 3H) ppm. 13C
NMR (75 MHz, CDCl3) l=173.8, 159.4, 139.0, 138.6,
138.5, 138.4, 138.3, 138.1, 129.8, 128.8, 128.6, 128.5,
128.4, 128.3, 128.2, 128.1, 125.9, 125.0, 98.5, 82.3, 80.2,
78.0, 70.8, 76.3, 75.6, 73.9, 71.3, 55.8 ppm. Anal. calcd
for: C35H34Br2O7: C, 57.87; H, 4.72. Found C, 57.95; H,
4.68.