Page 7 of 8
ACS Medicinal Chemistry Letters
Deacetylation Activity Is an Essential Epigenetics Mechanism of Anti-
Increasing PEPCK1-Related Metabolism. Neoplasia 2018, 20 (7), 745-
Atherogenesis by Hydrogen Sulfide. Antioxid Redox Signal 2019, 30
(2), 184-197.
756.
24.
1
2
3
Kozako, T.; Mellini, P.; Ohsugi, T.; Aikawa, A.; Uchida, Y. I.;
8.
Jing, H.; Lin, H., Sirtuins in Epigenetic Regulation. Chem. Rev.
Honda, S. I.; Suzuki, T., Novel small molecule SIRT2 inhibitors induce
cell death in leukemic cell lines. BMC Cancer 2018, 18 (1), 791.
2015, 115 (6), 2350-2375.
9.
Kosciuk, T.; Wang, M.; Hong, J. Y.; Lin, H., Updates on the
25.
Mellini, P.; Itoh, Y.; Elboray, E. E.; Tsumoto, H.; Li, Y.; Suzuki,
4
5
6
7
8
9
epigenetic roles of sirtuins. Curr. Opin. Chem. Biol. 2019, 51, 18-29.
10.
Jin, J.; Hu, J.; Lin, H.; Hao, Q., Deacylation Mechanism by SIRT2
Revealed in the 1'-SH-2'-O-Myristoyl Intermediate Structure. Cell
Chem Biol 2017, 24 (3), 339-345.
M.; Takahashi, Y.; Tojo, T.; Kurohara, T.; Miyake, Y.; Miura, Y.; Kitao, Y.;
Kotoku, M.; Iida, T.; Suzuki, T., Identification of Diketopiperazine-
Containing 2-Anilinobenzamides as Potent Sirtuin 2 (SIRT2)-Selective
Inhibitors Targeting the "Selectivity Pocket", Substrate-Binding Site,
and NAD(+)-Binding Site. J Med Chem 2019, 62 (12), 5844-5862.
Wang, Y.; Fung, Y. M. E.; Zhang, W.; He, B.; Chung, M. W. H.;
11.
Feldman, J. L.; Dittenhafer-Reed, K. E.; Kudo, N.; Thelen, J.
26.
Kudo, N.; Ito, A.; Arata, M.; Nakata, A.; Yoshida, M.,
N.; Ito, A.; Yoshida, M.; Denu, J. M., Kinetic and Structural Basis for
Acyl-Group Selectivity and NAD <sup>+</sup> Dependence in
Sirtuin-Catalyzed Deacylation. Biochemistry 2015, 54 (19), 3037-
3050.
Identification of a novel small molecule that inhibits deacetylase but
not defatty-acylase reaction catalysed by SIRT2. Philos Trans R Soc
Lond B Biol Sci 2018, 373 (1748).
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
27.
Spiegelman, N. A.; Price, I. R.; Jing, H.; Wang, M.; Yang, M.;
12.
Jin, J.; He, B.; Zhang, X.; Lin, H.; Wang, Y., SIRT2 Reverses 4-
Cao, J.; Hong, J. Y.; Zhang, X.; Aramsangtienchai, P.; Sadhukhan, S.; Lin,
H., Direct Comparison of SIRT2 Inhibitors: Potency, Specificity,
Activity-Dependent Inhibition, and On-Target Anticancer Activities.
ChemMedChem 2018, 13 (18), 1890-1894.
Oxononanoyl Lysine Modification on Histones. J. Am. Chem. Soc. 2016,
138 (38), 12304-7.
13.
Kim, C.; Koh, G. Y.; Lim, K.; Kang, G. Y.; Uee Lee, J.; Yim, Y. H.; Shong, M.;
Kwak, T. H.; Kweon, G. R., SIRT2 regulates tumour hypoxia response
by promoting HIF-1α hydroxylation. Oncogene 2015, 34 (11), 1354-
1362.
Seo, K. S.; Park, J. H.; Heo, J. Y.; Jing, K.; Han, J.; Min, K. N.;
28.
Kawaguchi, M.; Ieda, N.; Nakagawa, H., Development of
Peptide-Based Sirtuin Defatty-Acylase Inhibitors Identified by the
Fluorescence Probe, SFP3, That Can Efficiently Measure Defatty-
Acylase Activity of Sirtuin. J. Med. Chem. 2019, 62 (11), 5434-5452.
14.
North, B. J.; Marshall, B. L.; Borra, M. T.; Denu, J. M.; Verdin,
29.
Spiegelman, N. A.; Hong, J. Y.; Hu, J.; Jing, H.; Wang, M.; Price,
E., The Human Sir2 Ortholog, SIRT2, Is an NAD+-Dependent Tubulin
Deacetylase. Mol. Cell 2003, 11 (2), 437-444.
15.
A.; Kuperwasser, C., The SIRT2 Deacetylase Stabilizes Slug to Control
Malignancy of Basal-like Breast Cancer. Cell Rep. 2016, 17 (5), 1302-
1317.
I. R.; Cao, J.; Yang, M.; Zhang, X.; Lin, H., A Small-Molecule SIRT2
Inhibitor That Promotes K-Ras4a Lysine Fatty-Acylation.
ChemMedChem 2019, 14 (7), 744-748.
Zhou, W.; Ni, T. K.; Wronski, A.; Glass, B.; Skibinski, A.; Beck,
30.
Sun, B.; Fiskus, W.; Qian, Y.; Rajapakshe, K.; Raina, K.;
Coleman, K. G.; Crew, A. P.; Shen, A.; Saenz, D. T.; Mill, C. P.; Nowak, A.
J.; Jain, N.; Zhang, L.; Wang, M.; Khoury, J. D.; Coarfa, C.; Crews, C. M.;
Bhalla, K. N., BET protein proteolysis targeting chimera (PROTAC)
exerts potent lethal activity against mantle cell lymphoma cells.
Leukemia 2018, 32 (2), 343-352.
16.
Zhao, D.; Zou, S. W.; Liu, Y.; Zhou, X.; Mo, Y.; Wang, P.; Xu, Y.
H.; Dong, B.; Xiong, Y.; Lei, Q. Y.; Guan, K. L., Lysine-5 acetylation
negatively regulates lactate dehydrogenase A and is decreased in
pancreatic cancer. Cancer Cell 2013, 23 (4), 464-76.
31.
Raina, K.; Lu, J.; Qian, Y.; Altieri, M.; Gordon, D.; Rossi, A. M.
17.
Jing, H.; Hu, J.; He, B.; Negrón Abril, Y. L.; Stupinski, J.;
K.; Wang, J.; Chen, X.; Dong, H.; Siu, K.; Winkler, J. D.; Crew, A. P.; Crews,
C. M.; Coleman, K. G., PROTAC-induced BET protein degradation as a
therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci.
USA 2016, 113 (26), 7124-7129.
Weiser, K.; Carbonaro, M.; Chiang, Y.-L.; Southard, T.; Giannakakou, P.;
Weiss, R. S.; Lin, H., A SIRT2-Selective Inhibitor Promotes c-Myc
Oncoprotein Degradation and Exhibits Broad Anticancer Activity.
Cancer Cell 2016, 29 (3), 297-310.
32.
Ottis, P.; Crews, C. M., Proteolysis-Targeting Chimeras:
18.
Teng, Y.-B.; Jing, H.; Aramsangtienchai, P.; He, B.; Khan, S.;
Induced Protein Degradation as a Therapeutic Strategy. ACS Chem.
Biol. 2017, 12 (4), 892-898.
33.
Lehotzky, A.; Robaa, D.; Olah, J.; Ovadi, J.; Sippl, W.; Jung, M.,
Chemically Induced Degradation of Sirtuin 2 (Sirt2) by a Proteolysis
Targeting Chimera (PROTAC) Based on Sirtuin Rearranging Ligands
(SirReals). J Med Chem 2018, 61 (2), 482-491.
Hu, J.; Lin, H.; Hao, Q., Efficient Demyristoylase Activity of SIRT2
Revealed by Kinetic and Structural Studies. Sci. Rep. 2015, 5, 8529.
19.
Linder, M. E.; Lin, H., SIRT2 and lysine fatty acylation regulate the
transforming activity of K-Ras4a. Elife 2017, 6.
20.
Aramsangtienchai, P.; Wang, M.; Tong, Z.; Rosch, K. M.; Lin, H., SIRT2
and Lysine Fatty Acylation Regulate the Activity of RalB and Cell
Migration. ACS Chem. Biol. 2019, 14 (9), 2014-2023.
Schiedel, M.; Herp, D.; Hammelmann, S.; Swyter, S.;
Jing, H.; Zhang, X.; Wisner, S. A.; Chen, X.; Spiegelman, N. A.;
Spiegelman, N. A.; Zhang, X.; Jing, H.; Cao, J.; Kotliar, I. B.;
34.
Hong, J. Y.; Price, I. R.; Bai, J. J.; Lin, H., A Glycoconjugated
SIRT2 Inhibitor with Aqueous Solubility Allows Structure-Based
Design of SIRT2 Inhibitors. ACS Chem. Biol. 2019, 14 (8), 1802-1810.
35.
McCarter, J. D.; Mohl, D.; Sastri, C.; Lipford, J. R.; Cee, V. J., A "Click
Chemistry Platform" for the Rapid Synthesis of Bispecific Molecules
for Inducing Protein Degradation. J Med Chem 2018, 61 (2), 453-461.
21.
Outeiro, T. F.; Kontopoulos, E.; Altmann, S. M.; Kufareva, I.;
Wurz, R. P.; Dellamaggiore, K.; Dou, H.; Javier, N.; Lo, M. C.;
Strathearn, K. E.; Amore, A. M.; Volk, C. B.; Maxwell, M. M.; Rochet, J.-C.;
McLean, P. J.; Young, A. B.; Abagyan, R.; Feany, M. B.; Hyman, B. T.;
Kazantsev, A. G., Sirtuin 2 inhibitors rescue alpha-synuclein-mediated
toxicity in models of Parkinson's disease. Science 2007, 317 (5837),
516-519.
36.
Lu, J.; Qian, Y.; Altieri, M.; Dong, H.; Wang, J.; Raina, K.;
Hines, J.; Winkler, James D.; Crew, Andrew P.; Coleman, K.; Crews,
Craig M., Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently
Target BRD4. Chem. Biol. 2015, 22 (6), 755-763.
22.
Rumpf, T.; Schiedel, M.; Karaman, B.; Roessler, C.; North, B.
J.; Lehotzky, A.; Olah, J.; Ladwein, K. I.; Schmidtkunz, K.; Gajer, M.;
Pannek, M.; Steegborn, C.; Sinclair, D. A.; Gerhardt, S.; Ovadi, J.;
Schutkowski, M.; Sippl, W.; Einsle, O.; Jung, M., Selective Sirt2
inhibition by ligand-induced rearrangement of the active site. Nat.
Commun. 2015, 6, 6263.
37.
Zeng, M.; Xiong, Y.; Safaee, N.; Nowak, R. P.; Donovan, K. A.;
Yuan, C. J.; Nabet, B.; Gero, T. W.; Feru, F.; Li, L.; Gondi, S.; Ombelets, L.
J.; Quan, C.; Janne, P. A.; Kostic, M.; Scott, D. A.; Westover, K. D.; Fischer,
E. S.; Gray, N. S., Exploring Targeted Degradation Strategy for
Oncogenic KRAS(G12C). Cell Chem. Biol. 2020, 27 (1), 19-31 e6.
23.
Li, Y.; Zhang, M.; Dorfman, R. G.; Pan, Y.; Tang, D.; Xu, L.;
Zhao, Z.; Zhou, Q.; Zhou, L.; Wang, Y.; Yin, Y.; Shen, S.; Kong, B.; Friess,
H.; Zhao, S.; Wang, L.; Zou, X., SIRT2 Promotes the Migration and
Invasion of Gastric Cancer through RAS/ERK/JNK/MMP-9 Pathway by
ACS Paragon Plus Environment