962
I. Bryndal et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 96 (2012) 952–962
of Advanced Industrial Science and Technology (AIST), Japan (SDBS No:
modes. It should be pointed out that the quantum chemical
29780).
calculations refer to the molecules and their dimers in vac-
uum. However, the X-ray results refer to molecules in chem-
ical environment. Therefore these results have to differ
theoretically since the states of the molecules are different.
Besides, the quantum chemical methods are approxima-
tions; they yield only approximate results. The scaling tries
to equalize these deviations.
[28] M.A. Khan, M.N. Tahir, A.Q. Ather, M. Shaheen, R.A. Khan, Acta Crystallogr. E65
(2009) o1615.
[29] T. Talik, Z. Talik, Rocz. Chem. 42 (1968) 1647.
[30] Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED in Xcalibur PX
Software Version 1.171. Oxford Diffraction Ltd., Abington, England.
[31] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112–122.
[32] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,
O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh PA, 2003.
[33] D. Becke, J. Chem. Phys. 104 (1996) 1040–1046.
Acknowledgement
This work was financially supported by Ministry of Science and
Higher Education (Grant No. PBZ/MEiN/01/2006/21).
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[34] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
[35] R.G. Parr, W. Yang, Density-functional Theory of Atoms and Molecules, Oxford
University Press, New York, 1989.
[36] A.D. McLean, G.S. Chendler, J. Chem. Phys. 72 (1980) 5639–5648.
[37] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72 (1980) 650–654.
[38] M.J. Nowak, L. Lapinski, BALGA computer program for PED calculations. 49
(2009) 43-51, H. Rostkowska, L. Lapinski, M.J. Nowak, Vib. Spectrosc. 49 (2009)
43-51.
[39] M.M. Szczes´niak, D. Mas´lanka, AniMol - computer program, Infrared and
Raman Spectroscopy Teaching and Research Tool, Version 3.21 (1995–1997).
[40] M.A. Palafox, V.K. Rastogi, Spectrochim. Acta A 58 (2002) 411–440.
[41] D. Michalska, RAINT (Raman Intensities)-A Computer Program for Calculation
of Raman Intensities from the Gaussian Outputs, Wrocław University of
Technology, Wrocław, 2002 (see Ref. [24]).
References
[1] R.N. Castle, S.D. Philips, in: A.R. Katritzky, C.W. Rees (Eds.), Comprehensive
Heterocyclic Chemistry, vol. 3, Pergamon, Oxford, 1984.
[2] Y. Xiao-Dong, Y. Yu-Ye, Struct. Chem. 19 (2008) 693–696.
[3] S. Hilton, S. Naud, J.J. Caldwell, K. Boxall, S. Burns, V.E. Anderson, L. Antoni, C.E.
Allen, L.H. Pearl, A.W. Oliver, A.G. Wynne, M.D. Garrett, I. Collins, Bioorg. Med.
Chem. 18 (2010) 707–718.
[4] H. Ji, S.L. Delker, H. Li, P. Martásek, L.J. Roman, T.L. Poulos, R.B. Silverman, J.
Med. Chem. 53 (2010) 7804–7824.
[5] M.T. Cocco, C. Congiu, V. Onnis, Eur. J. Med. Chem. 35 (2000) 545–552.
[6] G.G. Danagulyan, L.G. Saakyan, G.A. Panosyan, Chem. Hetrerocycl. Compd. 37
(2001) 323–328.
[7] M.M. Krayushkin, I.P. Sedishev, V.N. Yarovenko, I.V. Zavarzin, S.K. Kotovskaya,
D.N. Kozhenikov, V.N. Charushin, Russ. J. Org. Chem. 44 (2008) 407–411.
[8] W.J. Coates, Chem. Abstr. 113 (1990) 40711.
[9] P. Raddatz, R. Bergmann, Chem. Abstr. 109 (1988) 54786.
[10] T.B. O’Dell, L.R. Wilson, M.D. Napoli, H.D. White, J.H. Mirsky, J. Pharmacol. Exp.
Ther. 128 (1960) 65–74.
[11] N. Ramamurthy, S. Dhanuskodi, M.V. Manjusha, J. Philip, Opt. Mater. 33 (2011)
607–612.
[12] B.K. Periyasamy, R.S. Jebas, B. Thailampillai, Mater. Lett. 61 (2007) 1489–1491.
[13] Y. Le Fur, R. Masse, J.-F. Nicoud, New J. Chem. (1998) 159–163.
[14] H. Koshima, H. Miyamoto, I. Yagi, K. Uosaki, Cryst. Growth Des. 4 (2004) 807–
811.
[15] P.V. Dhanaraj, N.P. Rajesh, G. Bhagavannarayana, Physica B 405 (2010) 3441–
3445.
[16] G.A. Babu, P. Ramasamy, J. Philip, Mater. Res. Bull. 46 (2011) 631–634.
[17] S. Manikandan, S. Dhanuskodi, Spectrochim. Acta, Part A 67 (2007) 160–165.
[18] A.P. Jeyakumari, S. Manivannan, S. Dhanuskodi, Spectrochim. Acta, Part A 67
(2007) 83–86.
[19] E. Kucharska, W. Sa˛siadek, J. Janczak, H. Ban-Oganowska, J. Lorenc, Z.
We˛glin´ ski, Z. Talik, K. Hermanowicz, J. Hanuza, Vib. Spectrosc. 53 (2010)
189–198.
[20] M. Wandas, Z. Pawelka, A. Puszko, J. Heterocycl. Chem. 37 (2000) 335–338.
[21] J. Lorenc, J. Mol. Struct. 748 (2005) 91–100.
[22] M. Wandas, E. Kucharska, J. Michalski, Z. Talik, J. Lorenc, J. Hanuza, J. Mol.
Struct. 1004 (2011) 156–162.
[23] J. Lorenc, I. Bryndal, M. Marchewka, W. Sa˛siadek, T. Lis, J. Hanuza, J. Raman
Spectrosc. 39 (2008) 569–581.
[24] J. Lorenc, I. Bryndal, M. Marchewka, E. Kucharska, T. Lis, J. Hanuza, J. Raman
Spectrosc. 39 (2008) 863–872.
[25] J. Lorenc, I. Bryndal, W. Syska, M. Wandas, M. Marchewka, A. Pietraszko, T. Lis,
M. Ma˛czka, J. Hanuza, Chem. Phys. 374 (2010) 1–14.
[26] I. Bryndal, E. Kucharska, W. Sa˛siadek, M. Wandas, T. Lis, J. Hanuza, Vib.
Spectrosc. (2012) in preparation.
´
[42] D. Michalska, R. Wysokinski, Chem. Phys. Lett. 403 (2005) 211–217. References
therein.
[43] R. Destro, T. Pilati, M. Simonetta, Acta Crystallogr. B31 (1975) 2883–2885.
[44] C.B. Aakeröy, A.M. Beatty, M. Nieuwenhuyzen, M. Zou, J. Mater. Chem. 8 (1998)
1385–1389.
[45] J.F. Nicoud, R. Masse, C. Bourgogne, C. Evans, J. Mater. Chem. 7 (1997) 35–39.
[46] T.W. Panunto, Z. Urban´ czyk-Lipkowska, R. Johnson, M.C. Etter, J. Am. Chem.
Soc. 109 (1987) 7786–7797.
[47] J. Bernstein, R.E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem., Int. Ed. Engl. 34
(1995) 1555–1573.
[48] T.-F. Tan, J. Han, M.-L. Pang, H.-B. Song, Y.-X. Ma, J.-B. Mong, Cryst. Growth Des.
6 (2006) 1186–1193.
[49] K.B. Wilberg, V.A. Walters, K.N. Wong, S.D. Colson, J. Phys. Chem. 88 (1984)
6067–6075.
[50] F. Partal Urena, M. Fernandez Gomez, J.J. Lopez Gonzales, E. Martinez Torres,
Spectrochim. Acta A 59 (2003) 2815–2839.
[51] E. Kucharska, J. Hanuza, M. Ma˛czka, Z. Talik, Vib. Spectrosc. 39 (2005) 1–14.
[52] G. Socrates, Infrared and Raman Characteristic Group Frequencies, third ed., J.
Wiley and Sons Ltd., 2001. References therein.
[53] D. Lin-vien, N.B. Cothup, W.G. Fateley, J.G. Graselli, The Handbook of Infrared
and Raman Characteristic Frequencies of Organic Molecules, Academic Press,
Boston, 1991.
[54] J. Michalski, J. Hanuza, M. Ma˛czka, Z. Talik, T. Głowiak, A. Szemik-Hojniak, J.H.
Van der Maas, J. Mol. Struct. 596 (2001) 109–121.
[55] M. Diem, Introduction to Modern Vibrational Spectroscopy, Wiley, New York,
1993.
[56] J. Oszust, J. Baran, A. Pietraszko, M. Drozd, Pol. J. Chem. 83 (2009) 835–855.
[57] S.N. Vinogradov, R.H. Linnell, Hydrogen Bonding, Van Nostrand Reinhold
Company, New York, 1971.
[58] A. Novak, Struct. Bonding 18 (1974) 177–216.
[59] P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen Bond Recent Developments
in Theory and Experiments, North-Holland Publ., Co., Amsterdam, New York,
Oxford, 1976.
[60] E. Jalviste, A. Treshchalov, Chem. Phys. 172 (1993) 325–338.
[61] G.A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press,
1997.
[27] Spectral
Database
for
Organic
Compounds,
SDBS;