Communication
ChemComm
7 W. M. Kok, J. M. Cottam, G. D. Ciccotosto, L. A. Miles, J. A. Karas,
D. B. Scanlon, B. R. Roberts, M. W. Parker, R. Cappai, K. J. Barnham
and C. A. Hutton, Chem. Sci., 2013, 4, 4449–4454.
8 T. T. O’Malley, N. A. Oktaviani, D. Zhang, A. Lomakin, B. O’Nuallain,
S. Linse, G. B. Benedek, M. J. Rowan, F. A. A. Mulder and
D. M. Walsh, Biochem. J., 2014, 461, 413–426.
9 Y. Irie, K. Murakami, M. Hanaki, Y. Hanaki, T. Suzuki, Y. Monobe,
T. Takai, K.-i. Akagi, T. Kawase, K. Hirose and K. Irie, ACS Chem.
Neurosci., 2017, 8, 807–816.
10 S. L. Bernstein, N. F. Dupuis, N. D. Lazo, T. Wyttenbach, M. M.
Condron, G. Bitan, D. B. Teplow, J. E. Shea, B. T. Ruotolo,
C. V. Robinson and M. T. Bowers, Nat. Chem., 2009, 1, 326–331.
11 M. Kloniecki, A. Jablonowska, J. Poznanski, J. Langridge, C. Hughes,
I. Campuzano, K. Giles and M. Dadlez, J. Mol. Biol., 2011, 407,
110–124.
12 W. M. Kok, D. B. Scanlon, J. A. Karas, L. A. Miles, D. J. Tew,
M. W. Parker, K. J. Barnham and C. A. Hutton, Chem. Commun.,
2009, 6228–6230.
13 T. Yamaguchi, H. Yagi, Y. Goto, K. Matsuzaki and M. Hoshino,
Biochemistry, 2010, 49, 7100–7107.
14 G. Bitan, A. Lomakin and D. B. Teplow, J. Biol. Chem., 2001, 276,
35176–35184.
15 G. Bitan and D. B. Teplow, Acc. Chem. Res., 2004, 37, 357–364.
16 D. B. Teplow, N. D. Lazo, G. Bitan, S. Bernstein, T. Wyttenbach,
M. T. Bowers, A. Baumketner, J.-E. Shea, B. Urbanc, L. Cruz,
J. Borreguero and H. E. Stanley, Acc. Chem. Res., 2006, 39, 635–645.
17 G. Yamin, T.-P. V. Huynh and D. B. Teplow, Biochemistry, 2015, 54,
5315–5321.
18 K. Murakami, M. Tokuda, T. Suzuki, Y. Irie, M. Hanaki, N. Izuo,
Y. Monobe, K.-i. Akagi, R. Ishii, H. Tatebe, T. Tokuda, M. Maeda,
T. Kume, T. Shimizu and K. Irie, Sci. Rep., 2016, 6, 29038.
19 A. Morimoto, K. Irie, K. Murakami, Y. Masuda, H. Ohigashi,
M. Nagao, H. Fukuda, T. Shimizu and T. Shirasawa, J. Biol. Chem.,
2004, 279, 52781–52788.
20 K. Murakami, K. Irie, H. Ohigashi, H. Hara, M. Nagao, T. Shimizu
and T. Shirasawa, J. Am. Chem. Soc., 2005, 127, 15168–15174.
21 Y. Masuda, S. Uemura, R. Ohashi, A. Nakanishi, K. Takegoshi,
T. Shimizu, T. Shirasawa and K. Irie, ChemBioChem, 2009, 10,
287–295.
positions 38 and 40, respectively, were quite similar to each
other.9,18
In summary, we have synthesized three full-length trimer
models, 7–9, with toxic conformations. The linker 6 was selected to
reproduce the putative trimer structure of Ab42 oligomers.30 The
synthesis of these models is straightforward and practical although
the purification step involves some laborious operations. Only 9,
with the linker at position 38, formed larger oligomers of 9–21-mer
that were weakly neurotoxic against SH-SY5Y cell lines. Therefore,
the trimer model 9 as well as the dimer model 10 may be useful
tools to understand amyloid aggregation and how the aggregates
correlates to toxicity.
Notably, as the neurotoxicities of 7–9 did not exceed that of
the monomer and the dimer model 10, which has an inter-
molecular parallel b-sheet, these propeller-type trimer models
with an anti-parallel b-sheet at the C-terminal region by the
linker 6 may not reflect the structure of toxic Ab oligomers.
Alternatively, Ab dimers like 10 might play a more critical role
in the pathogenesis of AD compared with the propeller-type
trimers. In order to verify which is more important, further
attempts to synthesize other types of trimer models, for example
trimers with intermolecular parallel b-sheets similar to the dimer
model 10, are required. Synthesis of the corresponding 42-mer
models would also be necessary.
It is quite difficult to determine the mechanism of toxicity of
Ab oligomers since the aggregation speed of Ab monomers is
very fast. In particular, while this is true for in vivo conditions,
studies have shown the mechanisms of toxicity via membrane
disruption and two steps of pore formation versus fiber-
dependent detergent-like mechanisms.35 Since synthetic oligo-
mers do not always reflect the heterogeneous mixture present
in vivo, the dynamics (or mobility) of residues that may be
responsible for toxicity could be different for synthetic species.
In addition, their affinity for the cell membrane and its
disruption could also be different.
22 C. Lendel, M. Bjerring, A. Dubnovitsky, R. T. Kelly, A. Filippov,
¨
O. N. Antzutkin, N. C. Nielsen and T. Hard, Angew. Chem., Int. Ed.,
2014, 53, 12756–12760.
23 I. Klyubin, V. Betts, A. T. Wetzel, K. Blennow, H. Zetterberg,
A. Wallin, C. A. Lemere, W. K. Cullen, Y. Peng, T. Wisniewski, D. J.
Selkoe, R. Anwyl, D. M. Walsh and M. J. Rowan, J. Neurosci., 2008,
28, 4231–4237.
24 G. M. Shankar, S. Li, T. H. Mehta, A. Garcia-Munoz, N. E.
Shepardson, I. Smith, F. M. Brett, M. A. Farrell, M. J. Rowan,
C. A. Lemere, C. M. Regan, D. M. Walsh, B. L. Sabatini and
D. J. Selkoe, Nat. Med., 2008, 14, 837–842.
25 T. Tomiyama, T. Nagata, H. Shimada, R. Teraoka, A. Fukushima,
H. Kanemitsu, H. Takuma, R. Kuwano, M. Imagawa, S. Ataka,
Y. Wada, E. Yoshioka, T. Nishizaki, Y. Watanabe and H. Mori,
Ann. Neurol., 2008, 63, 377–387.
This work was supported by JSPS KAKENHI Grant Number
26221202 to K. I. and K. M. The authors thank Ms Tomoyo
Takai and Ms Ritsuko Yamaguchi at the National Institute of
Biomedical Innovation for their assistance with TEM analysis.
26 M. Townsend, G. M. Shankar, T. Mehta, D. M. Walsh and D. J. Selkoe,
J. Physiol., 2006, 572, 477–492.
27 R. K. Spencer, H. Li and J. S. Nowick, J. Am. Chem. Soc., 2014, 136,
5595–5598.
28 K. Shinoda, Y. Sohma and M. Kanai, Bioorg. Med. Chem. Lett., 2015,
25, 2976–2979.
Conflicts of interest
There are no conflicts to declare.
29 K. Murakami, K. Irie, A. Morimoto, H. Ohigashi, M. Shindo,
M. Nagao, T. Shimizu and T. Shirasawa, J. Biol. Chem., 2003, 278,
46179–46187.
30 D. Huang, M. I. Zimmerman, P. K. Martin, A. J. Nix, T. L. Rosenberry
and A. K. Paravastu, J. Mol. Biol., 2015, 427, 2319–2328.
Notes and references
1 G. G. Glenner and C. W. Wong, Biochem. Biophys. Res. Commun.,
1984, 120, 885–890.
2 C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L.
´
McDonald and K. Beyreuther, Proc. Natl. Acad. Sci. U. S. A., 1985, 31 A. Ritzen, B. Basu, A. Wållberg and T. Frejd, Tetrahedron: Asymmetry,
82, 4245–4249.
1998, 3491–3496.
3 J. A. Hardy and G. A. Higgins, Science, 1992, 256, 184–185.
4 J. Hardy and D. J. Selkoe, Science, 2002, 297, 353–356.
5 D. M. Walsh, I. Klyubin, J. V. Fadeeva, W. K. Cullen, R. Anwyl, M. S.
Wolfe, M. J. Rowan and D. J. Selkoe, Nature, 2002, 416, 535–539.
32 T. Imamoto, K. Tamura, Z. Zhang, Y. Horiuchi, M. Sugiya,
K. Yoshida, A. Yanagisawa and I. D. Gridnev, J. Am. Chem. Soc.,
2012, 134, 1754–1769.
33 L. A. Carpino, J. Am. Chem. Soc., 1993, 115, 4397–4398.
6 B. O’Nuallain, D. B. Freir, A. J. Nicoll, E. Risse, N. Ferguson, 34 H. Naiki and F. Gejyo, Methods Enzymol., 1999, 309, 305–318.
C. E. Herron, J. Collinge and D. M. Walsh, J. Neurosci., 2010, 30, 35 S. A. Kotler, P. Walsh, J. R. Brender and A. Ramamoorthy, Chem. Soc.
14411–14419.
Rev., 2014, 43, 6692–6700.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 182--185 | 185