4
Tetrahedron Letters
primarily driven by electron donor–acceptor and metal–metal
develop switchable π-aromatic receptor, which is promising for
the further development of stimuli-responsive supramolecular
materials and devices.
interactions. Notably, molecular tweezer/guest complexation is
liable to solvent polarity changes, mainly attributing to the
cleavage of intramolecular hydrogen bonds on the tweezer
receptor. The current study demonstrates the efficiency to
Khoury, N. Kyritsakas and J.-M. Lehn, J. Am. Chem. Soc., 2004,
126, 6637.
† Electronic Supplementary Information (ESI) available.
Synthesis, characterization, UV-Vis titration data and other
materials. See DOI: 10.1039/x0xx00000x.
9.
a) H. Yoon, J. M. Lim, H.-C. Gee, C.-H. Lee, Y.-H. Jeong, D.
Kim and W.-D. Jang, J. Am. Chem. Soc., 2014, 136, 1672; b) C.
G. Oliveri, P. A. Ulmann, M. J. Wiester and C. A. Mirkin, Acc.
Chem. Res., 2008, 41, 1618; c) C. G. Oliveri, S. T. Nguyen and C.
A. Mirkin, Inorg. Chem., 2008, 47, 2755.
Acknowledgments
10. a) T. Muraoka, K. Kinbara and T. Aida, Nature, 2006, 440, 512; b)
S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu and O. Manabe,
J. Am. Chem. Soc., 1981, 103, 111; c) S. Yagai, K. Iwai, T.
Karatsu and A. Kitamura, Angew. Chem., Int. Ed., 2012, 51, 9679.
11. a) W. Xia, M. Ni, C. Yao, X. Wang, D. Chen, C. Lin, X.-Y. Hu,
and L. Wang, Macromolecules, 2005, 48, 4403; b) A. Iordache, M.
Retegan, F. Thomas, G. Royal, E. Saint-Aman and C. Bucher,
Chem. Eur. J., 2012, 18, 7648; c) M. Skibinski, R. Gomez, E.
Lork and V. A. Azov, Tetrahedron, 2009, 65, 10348; d) V. A.
Azov, R. Gomez and J. Stelten, Tetrahedron, 2008, 64, 1909; e)
G. Pognon, C. Boudon, K. J. Schenk, M. Bonin, B. Bach and J.
Weiss, J. Am. Chem. Soc., 2006, 128, 3488.
12. T. Naota and H. Koori, J. Am. Chem. Soc., 2005, 127, 9324.
13. a) Y. Tsuchido, Y. Suzaki, T. Ide and K. Osakada, Chem. Eur. J.,
2014, 20, 4762; b) X.-N. Xu, L. Wang, G.-T. Wang, J.-B. Lin, G.-
Y. Li, X.-K. Jiang and Z.-T. Li, Chem. Eur. J., 2009, 15, 5763. c)
H. M. Colquhoun, Z. Zhu, C. J. Cardin, M. G. Drew and Y. Gan,
Faraday Discuss., 2009, 143, 205; d) J.-L. Hou, H.-P. Yi, X.-B.
Shao, C. Li, Z.-Q. Wu, X.-K. Jiang, L.-Z. Wu, C.-H. Tung and Z.-
T. Li, Angew. Chem., 2006, 118, 810; e) Z.-Q. Wu, X.-B. Shao, C.
Li, J.-L. Hou, K. Wang, X.-K. Jiang and Z.-T. Li, J. Am. Chem.
Soc., 2005, 127, 17460;
This work was supported by the National Natural Science
Foundation of China (21274139, 91227119) and the Fundamental
Research Funds for the Central Universities (WK3450000001,
WK2060200012).
References and notes
1.
a) M. Lindqvist, K. Borre, K. Axenov, B. Kotai, M. Nieger, M.
Leskela, I. Papai and T. Repo, J. Am. Chem. Soc., 2015, 137, 4038;
b) V. Valderrey, G. Aragay and P. Ballester, Coord. Chem. Rev.,
2014, 258, 137; c) X. Xie, M. Pawlak, M.-L. Tercier-Waeber and
E. Bakker, Anal. Chem., 2012, 84, 3163; d) A. Chaudhary, S. P.
Rath. Chem.-Eur. J., 2012, 18, 7404; e) A. Chaudhary, S. P. Rath.
Chem.-Eur. J., 2011, 17, 11478; f) M. Hardouin–Lerouge, P.
Hudhomme and M. Salle, Chem. Soc. Rev., 2011, 40, 30; g) J.
Leblond and A. Petitjean, ChemPhysChem, 2011, 12, 1043; h) M.
D. Phillips, T. M. Fyles, N. P. Barwell and T. D. James, Chem.
Commun., 2009, 43, 6557; i) M. Harmata, Acc. Chem. Res., 2004,
37, 862; j) M. Tanaka, K. Ohkubo, C. P. Gros, et al. J. Am. Chem.
Soc., 2006, 128, 14625.
2.
a) Y. Ye, T. R. Cook, S.-P. Wang, J. Wu, S. Li, and P. J. Stang, J.
Am. Chem. Soc., 2015, 137, 11896; b) P. Wei, T. R. Cook, X. Yan,
F. Huang, and P. J. Stang, J. Am. Chem. Soc., 2014, 136, 15497; c)
X. Yan, T. R. Cook, J. B. Pollock, P. Wei, Y. Zhang, Y. Yu, F.
Huang, and P. J. Stang, J. Am. Chem. Soc., 2014, 136, 4460; d) S.
Li, J. Huang, T. R. Cook, J. B. Pollock, H. Kim, K.-W. Chi, and P.
J. Stang, J. Am. Chem. Soc., 2013, 135, 2084; e) V. W.-W. Yam
and K. M.-C. Wong, Chem. Commun., 2011, 47, 11579; f) V.
Guerchais and J.-L. Fillaut, Coord. Chem. Rev., 2011, 255, 2448;
g) K. M.-C. Wong and V. W.-W. Yam, Coord. Chem. Rev., 2007,
251, 2477; h) B.-H. Xia, H.-X. Zhang, C.-M. Che, K.-H. Leung,
D. L. Phillips, N. Zhu and Z.-Y. Zhou, J. Am. Chem. Soc., 2003,
125, 10362; i) A. J. Goshe, I. M. Steele, C. Ceccarelli, A. L.
Rheingold and B. Bosnich, Proc. Natl. Acad. Sci., 2002, 99, 4823.
S. Y.-L. Leung, A. Y.-Y. Tam, C.-H. Tao, H. S. Chow and V. W.-
W. Yam, J. Am. Chem. Soc., 2011, 134, 1047.
14. P. Job, Ann. Chim., 1928, 9, 113.
15. C. M. A. Leenders, L. Albertazzi, T. Mes, M. M. E. Koenigs, A. R.
A. Palmans, E. W. Meijer, Chem. Commun. 2013, 49, 1963.
3.
4.
a) Y. Tanaka, K. M.-C. Wong and V. W.-W. Yam, Chem. Eur. J.,
2013, 19, 390; b) Y. Tanaka, K. M.-C. Wong and V. W.-W. Yam,
Angew. Chem., Int. Ed., 2013, 52, 14117; c) Y. Tanaka, K. M.-C.
Wong and V. W.-W. Yam, Chem. Sci., 2012, 3, 1185; d) T.
Nabeshima, Y. Hasegawa, R. Trokowski and M. Yamamura,
Tetrahedron Lett., 2012, 53, 6182.
5.
6.
a) Y.-K. Tian, Y.-G. Shi, Z.-S. Yang and F. Wang, Angew. Chem.,
Int. Ed., 2014, 53, 6090; b) Y.-K. Tian, Z.-S. Yang, X.-Q. Lv, R.-
S. Yao and F. Wang, Chem. Commun., 2014, 50, 9477; c) H. Liu,
X. Han, Z. Gao, Z. Gao, and F. Wang, Macromol. Rapid Commun.
2016, DOI: 10.1002/marc.201500695.
a) X. Yan, T. R. Cook, P. Wang, F. Huang, P. J. Stang, Nat.
Chem., 2015, 7, 342; b) X.-Y. Hu, T. Xiao, C. Lin, F. Huang and
L. Wang, Acc. Chem. Res., 2014, 47, 2041; c) P. von Grebe, K.
Suntharalingam, R. Vilar, S. Miguel, J. Pablo, S. Herres-Pawlis
and B. Lippert, Chem. Eur. J., 2013, 19, 11429; d) K. Kinbara and
T. Aida, Chem. Rev., 2005, 105, 1377.
7.
8.
a) A. K.-W. Chan, W. H. Lam, Y. Tanaka, K. M.-C. Wong and V.
W.-W. Yam, Proc. Natl. Acad. Sci., 2015, 112, 690; b) J. Leblond,
H. Gao, A. Petitjean and J.-C. Leroux, J. Am. Chem. Soc., 2010,
132, 8544.
a) S. Ulrich, A. Petitjean and J. M. Lehn, Eur. J. Inorg. Chem.,
2010, 2010, 1913; b) M. Linke-Schaetzel, C. E. Anson, A. K.
Powell, G. Buth, E. Palomares, J. D. Durrant, T. S. Balaban and J.
M. Lehn, Chem. Eur. J., 2006, 12, 1931; c) A. Petitjean, R. G.
———