BULLETIN OF THE
Article
Quinoline-substituted Zinc(II) Phthalocyanine
KOREAN CHEMICAL SOCIETY
alternativesto enzyme-based colorimetric assays in diagnostic
applications.
(a)
(b)
(d)
(f)
Acknowledgment. This work was supported by the Technol-
ogy Innovation Program (No. 10047756, Development of
tetra-pyrrole type for color, light-emitting, detecting devices)
funded by the Ministry of Trade, Industry & Energy
(MI, Korea).
20µm
(c)
(e)
Supporting Information. Additional 1H-NMR and MALDI-
Mass data are provided.
References
1. (a) T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger,
F. M. Pfeffer, Coord. Chem. Rev. 2006, 250, 3094;
(b) N. A. Rakow, K. S. Suslick, Nature 2000, 406, 710;
(c) A. P. de Silva, D. B. Fox, A. J. M. Huxley, T. S. Moody,
Coord. Chem. Rev. 2000, 205, 41.
2. (a) H. N. Kim, W. X. Ren, J. S. Kim, J. Yoon, Chem. Soc. Rev.
2012, 41, 3210; (b) Y. Jeong, J. Yoon, Inorg. Chim. Acta 2012,
381, 2.
Figure 6. Bright-field images (left) and corresponding confocal fluo-
rescence images (right) of Chang liver cells (a) without incubation,
and after incubation with (b) Zn[Pc(O-QN)4] (5 μM), (c) Fe3+
(5 μM) and then Zn[Pc(O-QN)4] (5 μM), (d) Fe3+ (15 μM) and then
Zn[Pc(O-QN)4] (5 μM), (e) Zn2+ (5 μM) and then Zn[Pc(O-QN)4]
(5 μM), and (f ) Zn2+ (15 μM) and then Zn[Pc(O-QN)4] (5 μM).
3. (a) S. Jeong, W. Y. Kang, C. K. Song, J. S. Park, Dyes Pigments
2012, 93, 1544; (b) J. S. Park, S. Jeong, S. Dho, M. Lee,
C. K. Song, Dyes Pigments 2010, 87, 49; (c) D. T. Quang,
H. S. Jung, J. H. Yoon, S. Lee, J. S. Kim, Bull. Korean Chem.
Soc. 2007, 28, 682; (d) S. K. Kim, J. K. Lee, J. M. Lim,
J. W. Kim, J. S. Kim, Bull. Korean Chem. Soc. 2004, 25, 1247.
4. (a) S. R. Lynch, Nutr. Rev. 1997, 55, 102; (b) D. Touati, Arch.
Biochem. Biophys. 2000, 373, 1.
5. (a) R. S. Eisenstein, Annu. Rev. Nutr. 2000, 20, 627;
(b) B. F. Matzanke, G. M. Matzanke, K. N. Raymond, Iron Car-
riers Iron Proteins, VCH, New York, 1989, p. 1; (c) X. F. Liu,
E. C. Theil, Acc. Chem. Res. 2005, 38, 167; (d) F. A. Tezcan,
J. T. Kaiser, D. Mustafi, M. Y. Walton, J. B. Howard,
D. C. Rees, Science 2005, 309, 1377.
Inspired by the above results, we further investigated the
applicability of Zn[Pc(O-QN)4] in cell imaging. Images were
recorded after laser excitation at 488 nm and using emission
wavelengths around 655 nm for red fluorescence. As shown
in Figure 6, Zn[Pc(O-QN)4] was successfully employed in
the staining of Chang liver cells, which exhibited a red emis-
sion. After pre-incubation with Fe3+, the fluorescence inten-
sity was found to decrease and be completely quenched at
a higher concentration of 15 M. In comparison, enhanced
emission with excellent cell permeability was recorded after
pre-incubation with Zn2+. These observations clearly demon-
strated that Zn[Pc(O-QN)4] was biocompatible and useful for
detecting Fe3+ andZn2+ ionsinsidecells due tohigh selectivity
of the receptor toward metal ions.
6. (a) G. Cairo, A. Pietrangelo, Biochem. J. 2000, 352, 241;
(b) E. Beutler, V. Felitti, T. Gelbart, N. Ho, Drug Metab. Dispos.
2001, 29, 495.
7. (a) X. Xie, Nature 1991, 349, 521; (b) C. E. Outten,
T. V. O'Halloran, Science 2001, 292, 2488; (c) L. A. Finney,
T. V. O'Halloran, Science 2003, 300, 931.
8. (a) B. L. Vallee, K. H. Falchuk, Physiol. Rev. 1993, 73, 79;
(b) J. M. Berg, Y. G. Shi, Science 1996, 271, 1081.
Conclusion
We have presented quinoline-substituted Zn(II) phthalocya-
nine, Zn[Pc(O-QN)4], which can function as a highly selective
chemosensor for Fe3+ and Zn2+. Zn[Pc(O-QN)4] showed
selective and efficient fluorescence quenching toward Fe3+
ions and fluorescence enhancement toward Zn2+ ions.
Various characterization techniques were employed to inves-
tigate the intermolecular interaction between Zn[Pc(O-QN)4]
and metal ions. Combined experimental results revealed
that the main cause of the different behaviors of Zn[Pc(O-
QN)4] in the presence of Fe3+ and Zn2+ ions is the different
modes of interaction resulting from the discriminating detec-
tions of Fe3+ and Zn2+ ions. In addition, Zn[Pc(O-QN)4] was
successfully employed to stain Chang liver cells for fluores-
cent imaging in the absence and presence of metal ions.
We believe that the approach presented here would be
useful for the development of effective chemosensor
9. (a) M. G. Zhang, Y. H. Gao, M. Y. Li, M. X. Yu, F. Y. Li,
L. Li, M. W. Zhu, J. P. Zhang, T. Yi, C. H. Huang, Tetrahedron
Lett. 2007, 48, 3709; (b) O. Oter, K. Ertekin, C. Kirilmis,
M. Koca, M. Ahmedzade, Sensor. Actuat. B-Chem. 2007,
122, 450; (c) J. L. Bricks, A. Kovalchuk, C. Trieflinger,
M. Nofz, M. Buschel, A. I. Tolmachev, J. Daub, K. Rurack,
J. Am. Chem. Soc. 2005, 127, 13522; (d) G. E. Tumambac,
C. M. Rosencrance, C. Wolf, Tetrahedron 2004, 60, 11293;
(e) J. Mao, L. Wang, W. Dou, X. L. Tang, Y. Yan, W. S. Liu,
Org. Lett. 2007, 9, 4567.
10. J. P. Jiang, Z. J. Guo, Coord. Chem. Rev. 2004, 248, 205.
11. (a) R. P. Haugland, Handbook of Fluorescent Probes and
Research Chemicals 9th ed., Molecular Probes, Eugene, OR,
2002; (b) E. L. Que, D. W. Domaille, C. J. Chang, Chem. Rev.
2008, 108, 1517.
Bull. Korean Chem. Soc. 2015, Vol. 36, 2179–2184
© 2015 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim