the magnetic data were simulated numerically using MAGPACK
and L. Ouahab, Chem. Commun., 2012, 48, 714; A. J. Tasiopoulos
and S. P. Perlepes, Dalton Trans., 2008, 5537.
18
software with the following isotropic Heisenberg Hamiltonian:
2
3
I. Ratera and J. Veciana, Chem. Soc. Rev., 2012, 41, 303.
A. Caneschi, D. Gatteschi, R. Sessoli and P. Rey, Acc. Chem. Res.,
1989, 22, 392; K. E. Vostrikova, Coord. Chem. Rev., 2008,
252, 1409; C. Train, L. Norel and M. Baumgarten, Coord. Chem.
Rev., 2009, 253, 2342; M. T. Lemaire, Pure Appl. Chem., 2004,
H = ꢁ2JMn1-Rad[SMn1 ꢂ S
+ SMn1(ii) ꢂ S
] ꢁ
rad
rad(ii)
2
J
[SMn2(S
+ S
rad rad(ii)
)], where JMn1-Rad and J
Mn2-Rad
Mn2-Rad
represent the exchange interactions between ligand 1 (S = 1/2)
and Mn1 and Mn2 (S = 5/2) spins respectively, and S is the spin
i
7
6, 277; M. T. Lemaire, Pure Appl. Chem., 2011, 83, 141.
operator of each magnetic site. Introducing inter-complex interac-
tions in the above model in the frame of the mean-field approxi-
4
A. Dei, D. Gatteschi, C. Sangregorio and L. Sorace, Acc. Chem.
Res., 2004, 37, 827; D. A. Shultz, Magn.: Mol. Mater. II, 2001, 281;
D. N. Hendrickson and C. G. Pierpont, Top. Curr. Chem., 2004,
0
mation (zJ ),y an adequate simulation of the experimental data was
2
2
34, 63; P. Chaudhuri and K. Wieghardt, Prog. Inorg. Chem.,
001, 50, 151.
obtained with JMn1-Rad/k
B
= ꢁ35(1) K, JMn2-rad/k
B
= ꢁ13(1) K,
0
zJ /k
B
= ꢁ0.17(2) K, and giso = 2.05(2), suggesting an S
T
= 13/2
5
6
D. Luneau and P. Rey, Coord. Chem. Rev., 2005, 249, 2591;
S. Kaizaki, Coord. Chem. Rev., 2006, 250, 1804.
B. D. Koivisto and R. G. Hicks, Coord. Chem. Rev., 2005,
spin ground state for complex 2. This ground state is confirmed by
M vs. H data (inset Fig. 4) and the high field magnetization at
2
49, 2612; P. K. Poddutoori, M. Pilkington, A. Alberola,
1.8 K that saturates at 13.4mB.
V. Polo, J. E. Warren and A. van der Est, Inorg. Chem., 2010,
49, 3516; M. Chahma, K. Macnamara, A. van der Est,
A. Alberola, V. Polo and M. Pilkington, New J. Chem., 2007,
31, 1973; S. D. J. McKinnon, B. O. Patrick, A. B. P. Lever and
R. G. Hicks, Chem. Commun., 2010, 46, 773.
Magnetic coupling between radical ligand and terminal Mn1
atom spins is larger than that between the radical and central
Mn2 atom spins. This is likely a result of the larger spin density
at N1 than at O2, and possibly also aided by the in-plane,
bidentate coordination motif at Mn1. Short intermolecular
7
N. Roques, N. Domingo, D. Maspoch, K. Wurst, C. Rovira,
J. Tejada, D. Ruiz-Molina and J. Veciana, Inorg. Chem., 2010,
4
9, 3482; D. Maspoch, N. Domingo, D. Ruiz-Molina, K. Wurst,
Sꢀ ꢀ ꢀO contacts like those apparent in complex 2 (2.915 and
J. M. Hernandez, F. Lloret, J. Tejada, C. Rovira and J. Veciana,
Inorg. Chem., 2007, 46, 1627; N. Roques, V. Mugnaini and
J. Veciana, Top. Curr. Chem., 2010, 293, 207.
8 W. Fujita and K. Awaga, J. Am. Chem. Soc., 2001, 123, 3601;
Y. Miyoshi, K. Takahashi, T. Fujimoto, H. Yoshikawa, M. M.
Matsushita, Y. Ouchi, M. Kepenekian, V. Robert, M. P.
Donzello, C. Ercolani and K. Awaga, Inorg. Chem., 2012, 51, 456.
9 E. M. Fatila, J. Goodreid, R. Cle
K. E. Preuss, Chem. Commun., 2010, 46, 6569.
0 N. G. R. Hearns, R. Clerac, M. Jennings and K. E. Preuss, Dalton
Trans., 2009, 3193; N. G. R. Hearns, E. M. Fatila, R. Clerac,
M. Jennings and K. E. Preuss, Inorg. Chem., 2008, 47, 10330; N. G. R.
Hearns, K. D. Hesp, M. Jennings, J. L. Korcok, K. E. Preuss and
˚
.188 A; Fig. 3) have previously been shown to mediate AF
3
coupling between a radical ligand and a neighbouring Mn(II)
ion, thereby giving rise to a high spin ground state for a pair of
9
complexes. For 2, however, the dominant intermolecular
˚
magnetic contacts appear to be the Sꢀ ꢀ ꢀS contacts (3.388 A;
Fig. 3). Non-orthogonal overlap between neighbouring radical
ligand SOMOs provides a mechanism for the AF couplings
observed between the trinuclear complexes in the solid state.
Paramagnetic ligand 6,7-dimethyl-1,4-dioxo-naphtho[2,3-d]-
´
rac, M. Jennings, J. Assoud and
1
´
´
[
1,2,3]dithiazolyl, 1, is shown to be capable of coordinating a
ˇ
C. S. Smithson, Polyhedron, 2007, 26, 2047; J. Britten, N. G. R.
Hearns, K. E. Preuss, J. F. Richardson and S. Bin-Salamon, Inorg.
Chem., 2007, 46, 3934; N. G. R. Hearns, K. E. Preuss, J. F. Richardson
and S. Bin-Salamon, J. Am. Chem. Soc., 2004, 126, 9942.
metal ion in a monodentate fashion at atom O2 and in a
bidentate chelating fashion at atoms N1 and O1. Owing to the
significant spin density at both N1 and O2, strong antiferro-
magnetic coupling is observed between the ligand and the
metal ions in both positions. The trinuclear coordination
complex 2 is the first example of metal ion coordination to a
11 M. Jennings, K. E. Preuss and J. Wu, Chem. Commun., 2006, 341.
2 J. Wu, D. J. MacDonald, R. Clerac, R. Jeon Ie, M. Jennings,
A. J. Lough, J. Britten, C. Robertson, P. A. Dube and
1
´
K. E. Preuss, Inorg. Chem., 2012, 51, 3827.
13 R. Mayer, G. Domschke, S. Bleisch and A. Bartl, Z. Chem., 1981,
1, 324.
1
,2,3-dithiadiazolyl radical and it is a very rare example of a
2
linear ‘‘oligomeric’’ radical ligand coordination complex
with more than two metal ions. This complex is robust and
volatile, such that sublimation produces pure crystalline
material on a preparative scale. The spin ground state of the
1
4 A. Decken, A. Mailman, S. M. Mattar and J. Passmore, Chem.
Commun., 2005, 2366.
15 A. Alberola, R. J. Less, C. M. Pask, J. M. Rawson, F. Palacio,
P. Oliete, C. Paulsen, A. Yamaguchi, R. D. Farley and D. M. Murphy,
Angew. Chem., Int. Ed., 2003, 42, 4782; A. Alberola, C. S. Clarke,
D. A. Haynes, S. I. Pascu and J. M. Rawson, Chem. Commun., 2005,
T
complex 2 is S = 13/2, the highest to date for any thiazyl–
metal system.
4
726; S. M. Winter, K. Cvrkalj, P. A. Dube, C. M. Robertson,
M. R. Probert, J. A. Howard and R. T. Oakley, Chem. Commun.,
009, 7306; X. Yu, A. Mailman, P. A. Dube, A. Assoud and
Funding provided to K.E.P. by NSERC (DG), CFI (LOF),
OIT, the CRC program, and the University of Guelph. R.C.
2
R. T. Oakley, Chem. Commun., 2011, 47, 4655.
thanks the University of Bordeaux, the Region Aquitaine and
´
1
6 K. V. Shuvaev, A. Decken, F. Grein, T. S. Abedin, L. K. Thompson
and J. Passmore, Dalton Trans., 2008, 4029; A. Alberola, E. Carter,
C. P. Constantinides, D. J. Eisler, D. M. Murphy and J. M. Rawson,
Chem. Commun., 2011, 47, 2532.
the CNRS for financial support.
Notes and references
1
7 A. Caneschi, D. Gatteschi, P. Rey and R. Sessoli, Inorg. Chem.,
988, 27, 1756; A. Caneschi, D. Gatteschi, J. Laugier, P. Rey,
z For 86 measured benzoquinone species, the unweighted mean CQO
1
˚
˚
bond length is 1.222 A, the median is 1.220 A with a standard
R. Sessoli and C. Zanchini, J. Am. Chem. Soc., 1988, 110, 2795;
A. Caneschi, D. Gatteschi, J. Laugier, L. Pardi, P. Rey and
C. Zanchini, Inorg. Chem., 1988, 27, 2027.
19
˚
deviation of 0.013 A, and the upper quartile is 1.231 A.
˚
y In order to take into account the inter-complex interaction, the
following definition of the susceptibility has been used:
20
1
1
8 J. J. Borra
´
s-Almenar, J. M. Clemente-Juan, E. Coronado and
s-Almenar,
B. S. Tsukerblat, Inorg. Chem., 1999, 38, 6081; J. J. Borra
´
w
Mn3Rad2
w ¼
J. M. Clemente-Juan, E. Coronado and B. S. Tsukerblat, Comput.
Chem., 2001, 22, 985.
9 CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC
Press, Inc., Boca Raton, 1991, 72 edn.
20 C. J. O’Connor, Prog. Inorg. Chem., 1982, 29, 203; B. E. Myers,
L. Berger and S. Friedberg, J. Appl. Phys., 1969, 40, 1149.
0
2
zJ
1
ꢁ
2
2
wMn3Rad2
Ng mB
.
1
G. Aromı, D. Aguila, P. Gamez, F. Luis and O. Roubeau, Chem.
´ `
Soc. Rev., 2012, 41, 537; F. Pointillart, S. Klementieva,
V. Kuropatov, Y. Le Gal, S. Golhen, O. Cador, V. Cherkasov
This journal is c The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 10963–10965 10965