Communications
[6] For examples, see: J. L. Atwood, G. A. Koutsantonis, C. L.
no meaningfull bonding geometry could be detected in the
fullerene fragment. The strongest peaks observed in difference
fourier maps were included in the refinement. In the initial
refinement cycles they were refined with a common isotropic
temperature factor and variable occupancy factors. Additional
difference fourier peaks were added until the electron density in
the C60 fragment amounted to the expected value of 10 carbon
atoms. In the last cycles of the refinement they were refined with
isotropic temperature factors and the fixed occupancy factors
which had been determined in the previous refinement cycles.
CCDC-245390, CCDC-245391, and CCDC-245392 contain the
supplementary crystallographic data for this paper. These data
retrieving.html (or from the Cambridge Crystallographic Data
Centre, 12, Union Road, Cambridge CB21EZ, UK; fax:
(+ 44)1223-336-033; or deposit@ccdc.cam.ac.uk).
Raston, Nature 1994, 368, 229; T. Suzuki, K. Nakashima, S.
Shinkai, Chem. Lett. 1994, 699; T. Haino, M. Yanase, Y.
Fukazawa, Angew. Chem. 1998, 110, 1044; Angew. Chem. Int.
Ed. 1998, 37, 997; J. L. Atwood, L. J. Barbour, C. L. Raston,
I. B. N. Sudria, Angew. Chem. 1998, 110, 1029; Angew. Chem. Int.
Ed. 1998, 37, 981; T. Kawase, K. Tanaka, N. Fujiwara, H. R.
Darabi, M. Oda, Angew. Chem. 2003, 115, 1662; Angew. Chem.
Int. Ed. 2003, 42, 1624; M. Wang, X. Zhang, Q. Zheng, Angew.
Chem. 2004, 116, 856; Angew. Chem. Int. Ed. 2004, 43, 838.
[7] a) Y. Sun, T. Drovetskaya, R. D. Bolskar, R. Bau, P. D. W. Boyd,
C. A. Reed, J. Org. Chem. 1997, 62, 3642; b) M. M. Olmstead,
D. A. Costa, K. Maitra, B. C. Noll, S. L. Phillips, P. M. Van Cal-
car, A. L. Balch, J. Am. Chem. Soc. 1999, 121, 7090; c) P. D. W.
Boyd, M. C. Hodgson, C. E. F. Rickard, A. G. Oliver, L. Chaker,
P. J. Brothers, R. D. Bolskar, F. S. Tham, C. A. Reed, J. Am.
Chem. Soc. 1999, 121, 10487.
[8] For reviews and examples, see: E. A. Meyer, R. K. Castellano, F.
Diederich, Angew. Chem. 2003, 115, 1224; Angew. Chem. Int.
Ed. 2003, 42, 1210; J. C. Collings, K. P. Roscoe, R. L. Thomas,
A. S. Batsanov, L. M. Stimson, J. A. K. Howard, T. B. Marder,
New J. Chem. 2001, 25, 1410; M. Gdaniec, W. Jankowski, M. J.
Milewska, T. Polonski, Angew. Chem. 2003, 115, 4033; Angew.
Chem. Int. Ed. 2003, 42, 3903; S. W. Watt, C. Dai, A. J. Scott,
J. M. Burke, R. Ll. Thomas, J. C. Collings, C. Vieney, W. Clegg,
T. B. Marder Angew. Chem. 2004, 116, 3123; Angew. Chem. Int.
Ed. 2004, 43, 3061.
[9] a) G. W. Coates, A. R. Dunn, L. M. Henling, D. A. Dougherty,
R. H. Grubbs, Angew. Chem. 1997, 109, 290; Angew. Chem. Int.
Ed. Engl. 1997, 36, 248; G. W. Coates, A. R. Dunn, L. M.
Henling, J. W. Ziller, E. B. Lobkovsky, R. H. Grubbs, J. Am.
Chem. Soc. 1998, 120, 3641; b) A. F. M. Kilbinger, R. H. Grubbs,
Angew. Chem. 2002, 114, 1633; Angew. Chem. Int. Ed. 2002, 41,
1563; c) M. L. Renak, G. P. Bartholomeu, S. Wang, P. J. Ricatto,
R. J. Lachiotte, G. C. Bazan, J. Am. Chem. Soc. 1999, 121, 7787;
W. J. Feast, P. W. Lovenlich, H. Puschmann, C. Taliani, Chem.
Commun. 2001, 505; d) M. Weck, A. R. Dunn, K. Matsumoto,
G. W. Coates, E. B. Lobkovsky, R. H. Grubbs, Angew. Chem.
1999, 111, 2909; Angew. Chem. Int. Ed. 1999, 38, 2741.
[13] a) T. Baird, J. H. Gall, D. D. MacNicol, P. R. Mallinson, C. R.
Michie, J. Chem. Soc. Chem. Commun. 1988, 1471; b) G. A.
Downing, C. S. Frampton, D. D. MacNicol, P. R. Mallinson,
Angew. Chem. 1994, 106, 1653; Angew. Chem. Int. Ed. Engl.
1994, 33, 1587.
[14] J. C. Hanson, C. E. Nordmann, Acta Crystallogr. Sect. B 1975, 32,
1147.
[15] a) R. Goddard, M. W. Haenel, W. C. Herndon, C. Krꢃger, M.
Zander, J. Am. Chem. Soc. 1995, 117, 30; b) P. T. Herwig, V.
Enkelmann, O. Schmelz, K. Mꢃllen, Chem. Eur. J. 2000, 6, 1834.
[16] R. S. Rowland, R. Taylor, J. Phys. Chem. 1996, 100, 7384.
[17] B. Narymbetov, H. Kobayashi, M. Tokumoto, A. Omerzu, D.
Mihailovic, Chem. Commun. 1999, 1511.
[18] Graphite and typical arene/arene separation is in the range 3.3–
3.5 ꢀ, fullerene/arene approaches lie in the range 3.0–3.5 ꢀ,
calixarene/fullerene and related complexes 3.5–3.6 ꢀ, however,
a close approach 2.75 ꢀ is observed for a porphyrin/fullerene
assembly.[7]
[19] A toluene solution of C60 and 4 shows UV/Vis spectra that are
simply the superposition of the spectra of the two individual
chromophores without a charge-transfer absorption band; how-
ever, it is still difficult to draw conclusions about whether or not
charge-transfer interactions are important in crystals
[10] a) M. D. Watson, A. Fechtenkꢁtter, K. Mꢃllen, Chem. Rev. 2001,
101, 1267; b) Z. Wang, M. D. Watson, J. Wu, K. Mꢃllen, Chem.
Commun. 2004, 336.
[11] Z. Wang, Z. Tomovic, M. Kastler, R. Pretsch, F. Negri, V.
Enkelmann, K. Mꢃllen, J. Am. Chem. Soc. 2004, 126, 7794.
[12] Data collections for the crystal-structure analysis were per-
formed on a Nonius KCCD diffractometer equipped with a
Cryostream cooler with graphite monochromated MoKa radia-
tion. The structures were solved by direct methods (Shelxs) and
refined on F with anisotropic temperature factors for the non-
hydrogen atoms. The H atoms were refined with fixed isotropic
temperature factors in the riding mode. 4·4CH2Cl2: C32H31Cl4O9,
monoclinic, space group P21/c, T= 150 K, a = 14.6101(7), b =
13.0471(6), c = 16.2439(7) ꢀ, b = 91.990(3)8, V= 3094.5(4) ꢀ3,
Z = 4, 1calcd = 1.505 gcmÀ3, m = 0.438 mmÀ1; 12418 reflections
measured, of which 7485 were unique (Rint = 0.026) and 3661
were observed; R = 0.086, Rw = 0.0817. 4·2C6F6: C36H27F6O9,
¯
triclinic, space group P1, T= 120 K, a = 11.1105(5), b =
11.7330(5), c = 13.0297(6) ꢀ, a = 73.425(1), b = 88.923(1), g =
75.098(1)8, V= 1570.2(2) ꢀ3, Z = 2, 1calcd = 1.517 gcmÀ3
, m =
0.131 mmÀ1; 29594 reflections measured, of which 8552 were
unique (Rint = 0.048) and 5203 were observed; R = 0.0651, Rw =
¯
0.0698. 4·C60: C20H9O3, trigonal, space group R3, T= 120 K, a =
22.1940(7), b = 22.1940(7), c = 12.8191(5) ꢀ, V= 5468.4(6) ꢀ3,
Z = 6, 1calcd = 1.624 gcmÀ3, m = 0.110 mmÀ1; 26529 reflections
measured, of which 3375 were unique (Rint = 0.041) and 1687
were observed; R = 0.0872, Rw = 0.0967. The fullerene molecule
was found to be disordered even at low temperatures such that
1250
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 1247 –1250