Inorganic Chemistry
Article
(15) Hawecker, J.; Lehn, J.-M.; Ziessel, R. Efficient photochemical
reduction of CO2 to CO by visible light irradiation of systems
containing Re(bipy)(CO)3X or [Ru(bipy)3]2+-Co2+ combinations as
homogeneous catalysts. J. Chem. Soc., Chem. Commun. 1983, 536−
538.
(16) Morris, A. J.; Meyer, G. J.; Fujita, E. Molecular Approaches to
the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Acc.
Chem. Res. 2009, 42, 1983−1994.
(17) Elgrishi, N.; Chambers, M. B.; Wang, X.; Fontecave, M.
Molecular polypyridine-based metal complexes as catalysts for the
reduction of CO2. Chem. Soc. Rev. 2017, 46, 761−796.
(18) Reithmeier, R.; Bruckmeier, C.; Rieger, B. Conversion of CO2
via Visible Light Promoted Homogeneous Redox Catalysis. Catalysts
2012, 2, 544.
Autocatalytic Surface-Growth Mechanism of Metal Film Formation. J.
Am. Chem. Soc. 2003, 125, 10301−10310.
(34) Crabtree, R. H. Resolving Heterogeneity Problems and
Impurity Artifacts in Operationally Homogeneous Transition Metal
Catalysts. Chem. Rev. 2012, 112, 1536−1554.
(35) Artero, V.; Fontecave, M. Solar fuels generation and molecular
systems: is it homogeneous or heterogeneous catalysis? Chem. Soc.
Rev. 2013, 42, 2338−2356.
(36) Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-light-
driven methane formation from CO2 with a molecular iron catalyst.
Nature 2017, 548, 74.
(37) Lee, S. K.; Kondo, M.; Okamura, M.; Enomoto, T.; Nakamura,
G.; Masaoka, S. Function-Integrated Ru Catalyst for Photochemical
CO2 Reduction. J. Am. Chem. Soc. 2018, 140, 16899−16903.
(38) Genoni, A.; Chirdon, D. N.; Boniolo, M.; Sartorel, A.;
Bernhard, S.; Bonchio, M. Tuning Iridium Photocatalysts and Light
Irradiation for Enhanced CO2 Reduction. ACS Catal. 2017, 7, 154−
160.
(39) Bonin, J.; Robert, M.; Routier, M. Selective and Efficient
Photocatalytic CO2 Reduction to CO Using Visible Light and an
Iron-Based Homogeneous Catalyst. J. Am. Chem. Soc. 2014, 136,
16768−16771.
(40) Takeda, H.; Koike, K.; Morimoto, T.; Inumaru, H.; Ishitani, O.
Photochemistry and photocatalysis of rhenium(I) diimine complexes.
Adv. Inorg. Chem. 2011, 63, 137−186.
(41) Thoi, V. S.; Kornienko, N.; Margarit, C. G.; Yang, P.; Chang, C.
J. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon
Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-
Isoquinoline Complex. J. Am. Chem. Soc. 2013, 135, 14413−14424.
(42) Liyanage, N. P.; Yang, W.; Guertin, S.; Sinha Roy, S.;
Carpenter, C. A.; Adams, R. E.; Schmehl, R. H.; Delcamp, J. H.; Jurss,
J. W. Photochemical CO2 reduction with mononuclear and dinuclear
rhenium catalysts bearing a pendant anthracene chromophore. Chem.
Commun. 2019, 55, 993−996.
(43) Guo, Z.; Yu, F.; Yang, Y.; Leung, C.-F.; Ng, S.-M.; Ko, C.-C.;
Cometto, C.; Lau, T.-C.; Robert, M. Photocatalytic Conversion of
CO2 to CO by a Copper(II) Quaterpyridine Complex. ChemSusChem
2017, 10, 4009−4013.
(19) Sahara, G.; Ishitani, O. Efficient Photocatalysts for CO2
Reduction. Inorg. Chem. 2015, 54, 5096−5104.
(20) Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons,
Photons, Protons and Earth-Abundant Metal Complexes for
Molecular Catalysis of CO2 Reduction. ACS Catal. 2017, 7, 70−88.
(21) Kuramochi, Y.; Ishitani, O.; Ishida, H. Reaction mechanisms of
catalytic photochemical CO2 reduction using Re(I) and Ru(II)
complexes. Coord. Chem. Rev. 2018, 373, 333−356.
(22) Guisado-Barrios, G.; Bouffard, J.; Donnadieu, B.; Bertrand, G.
Bis(1,2,3-triazol-5-ylidenes) (i-bitz) as Stable 1,4-Bidentate Ligands
Based on Mesoionic Carbenes (MICs). Organometallics 2011, 30,
6017−6021.
(23) Guisado-Barrios, G.; Soleilhavoup, M.; Bertrand, G. 1H-1,2,3-
Triazol-5-ylidenes: Readily Available Mesoionic Carbenes. Acc. Chem.
Res. 2018, 51, 3236−3244.
̈
(24) Gierz, V.; Maichle-Mossmer, C.; Kunz, D. 1,10-Phenanthroline
Analogue Pyridazine-Based N-Heterocyclic Carbene Ligands. Organo-
metallics 2012, 31, 739−747.
(25) Kunz, D.; Flaig, K. S. The coordinative flexibility of rigid
phenanthroline-analogous di(NHC)-ligands. Coord. Chem. Rev. 2018,
377, 73−85.
(26) Tokmic, K.; Markus, C. R.; Zhu, L.; Fout, A. R. Well-Defined
Cobalt(I) Dihydrogen Catalyst: Experimental Evidence for a Co(I)/
Co(III) Redox Process in Olefin Hydrogenation. J. Am. Chem. Soc.
2016, 138, 11907−11913.
(44) Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. Development of
an Efficient Photocatalytic System for CO2 Reduction Using
Rhenium(I) Complexes Based on Mechanistic Studies. J. Am. Chem.
Soc. 2008, 130, 2023−2031.
(45) Kou, Y.; Nabetani, Y.; Masui, D.; Shimada, T.; Takagi, S.;
Tachibana, H.; Inoue, H. Direct Detection of Key Reaction
Intermediates in Photochemical CO2 Reduction Sensitized by a
Rhenium Bipyridine Complex. J. Am. Chem. Soc. 2014, 136, 6021−
6030.
(27) Kim, D.; Le, L.; Drance, M. J.; Jensen, K. H.; Bogdanovski, K.;
Cervarich, T. N.; Barnard, M. G.; Pudalov, N. J.; Knapp, S. M. M.;
Chianese, A. R. Ester Hydrogenation Catalyzed by CNN-Pincer
Complexes of Ruthenium. Organometallics 2016, 35, 982−989.
(28) Chianese, A. R.; Mo, A.; Lampland, N. L.; Swartz, R. L.;
Bremer, P. T. Iridium Complexes of CCC-Pincer N-Heterocyclic
Carbene Ligands: Synthesis and Catalytic C-H Functionalization.
Organometallics 2010, 29, 3019−3026.
(29) Chung, L.-H.; Cho, K.-S.; England, J.; Chan, S.-C.; Wieghardt,
K.; Wong, C.-Y. Ruthenium(II) and Osmium(II) Complexes Bearing
Bipyridine and the N-Heterocyclic Carbene-Based C-N-C Pincer
Ligand: An Experimental and Density Functional Theory Study. Inorg.
Chem. 2013, 52, 9885−9896.
(46) Sekizawa, K.; Maeda, K.; Domen, K.; Koike, K.; Ishitani, O.
Artificial Z-Scheme Constructed with a Supramolecular Metal
Complex and Semiconductor for the Photocatalytic Reduction of
CO2. J. Am. Chem. Soc. 2013, 135, 4596−4599.
(47) Sahara, G.; Kumagai, H.; Maeda, K.; Kaeffer, N.; Artero, V.;
Higashi, M.; Abe, R.; Ishitani, O. Photoelectrochemical Reduction of
CO2 Coupled to Water Oxidation Using a Photocathode With a
Ru(II)-Re(I) Complex Photocatalyst and a CoOx/TaON Photo-
anode. J. Am. Chem. Soc. 2016, 138, 14152−14158.
(48) Ha, E. G.; Chang, J. A.; Byun, S. M.; Pac, C.; Jang, D. M.; Park,
J.; Kang, S. O. High-turnover visible-light photoreduction of CO2 by a
Re(I) complex stabilized on dye-sensitized TiO2. Chem. Commun.
2014, 50, 4462−4.
(49) Won, D. I.; Lee, J. S.; Ji, J. M.; Jung, W. J.; Son, H. J.; Pac, C.;
Kang, S. O. Highly Robust Hybrid Photocatalyst for Carbon Dioxide
Reduction: Tuning and Optimization of Catalytic Activities of Dye/
TiO2/Re(I) Organic-Inorganic Ternary Systems. J. Am. Chem. Soc.
2015, 137, 13679−90.
̈
̈
(30) Gradert, C.; Krahmer, J.; Sonnichsen, F. D.; Nather, C.;
Tuczek, F. Molybdenum(0)-carbonyl complexes supported by mixed
benzimidazol-2-ylidene/phosphine ligands: Influence of benzannula-
tion on the donor properties of the NHC groups. J. Organomet. Chem.
2014, 770, 61−68.
(31) Coggins, M. K.; Zhang, M.-T.; Chen, Z.; Song, N.; Meyer, T. J.
Single-Site Copper(II) Water Oxidation Electrocatalysis: Rate
2‑
Enhancements with HPO4 as a Proton Acceptor at pH 8. Angew.
Chem., Int. Ed. 2014, 53, 12226−12230.
(32) Zhang, T.; Wang, C.; Liu, S.; Wang, J.-L.; Lin, W. A Biomimetic
Copper Water Oxidation Catalyst with Low Overpotential. J. Am.
Chem. Soc. 2014, 136, 273−281.
(33) Widegren, J. A.; Bennett, M. A.; Finke, R. G. Is It
Homogeneous or Heterogeneous Catalysis? Identification of Bulk
Ruthenium Metal as the True Catalyst in Benzene Hydrogenations
Starting with the Monometallic Precursor, Ru(II)(η6-C6Me6)(OAc)2,
Plus Kinetic Characterization of the Heterogeneous Nucleation, Then
(50) Windle, C. D.; Pastor, E.; Reynal, A.; Whitwood, A. C.;
Vaynzof, Y.; Durrant, J. R.; Perutz, R. N.; Reisner, E. Improving the
Photocatalytic Reduction of CO2 to CO through Immobilisation of a
Molecular Re Catalyst on TiO2. Chem. - Eur. J. 2015, 21, 3746−3754.
H
Inorg. Chem. XXXX, XXX, XXX−XXX