4 H. Zhang, C. L. Wang, M. J. Li, J. H. Zhang, G. Lu and B. Yang,
Adv. Mater., 2005, 17, 853.
5 S. Y. Yang, Q. Li, L. Chen and S. Chen, J. Mater. Chem., 2008, 18,
5599.
6 B. C. Das and J. Pal, ACS Nano, 2008, 2, 1930.
7 J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson,
R. D. Schaller, V. I. Klimov and J. A. Hollingsworth, J. Am. Chem.
Soc., 2008, 130, 4879.
with the corresponding PL spectra (Fig. 10e). These luminescent
photographs visually demonstrate the bifunctional photo-
luminescent-hydrophobic properties of the synthesized NCs.
Therefore, the present strategy provides a new approach to
technologies requiring both optical imaging and self-cleaning
function.
8 J. Wang, D. Y. Wang, N. S. Sobal, M. Giersig, M. Jiang and
€
H. Mohwald, Angew. Chem., Int. Ed., 2006, 45, 7963.
9 Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore and T. P. Russell,
Science, 2003, 299, 226.
Conclusions
This work has demonstrated a simple and facile strategy for
fabricating bifunctional photoluminescent-superhydrophobic
CdS NCs with controlled diverse hierarchical structures via
a novel interfacial self-assembly procedure. Wire-like, belt-like,
and even sheet-like microstructures can be obtained through
simply varying the structures of the directing molecules. The
dithiocarbamate-functionalized CdS NCs after interfacial
assembly present high performance of photoluminescence
compared with those of the parent CdS NCs, especially in high
quantum yields. Simultaneously, the introduction of dithiocar-
bamate ligands derived from the reactions of carbon disulfide
and amine-containing ligand with long alkyl chain can signifi-
cantly enhance the hydrophobic properties of NCs in this case,
which will contribute a promising way to fabricate bifunctional
photoluminescent-superhydrophobic films. More broadly prac-
tical application to this approach for dithiocarbamate-func-
tionalized NCs with advantageous functionalities may follow.
10 C. N. R. Rao and K. P. Kalyanikutty, Acc. Chem. Res., 2008, 41, 489.
11 H. Tetsuka, T. Ebina and F. Mizukami, Adv. Mater., 2008, 20, 3039.
12 X. J. Feng and L. Jiang, Adv. Mater., 2006, 18, 3063.
13 S. Chen, C. H. Hu, L. Chen and N. P. Xu, Chem. Commun., 2007,
1919.
14 H. Y. Erbil, A. L. Demirel, Y. Avci and O. Mert, Science, 2003, 299,
1377.
15 J. Hong, W. K. Bae, H. Lee, S. Oh, K. Char and F. Caruso, Adv.
Mater., 2007, 19, 4364.
16 Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi,
A. Fujishima and O. Sato, Angew. Chem., Int. Ed., 2003, 42, 894.
€
17 H. Zhang, Z. C. Cui, Y. Wang, K. Zhang, X. L. Ji, C. L. Lu, B. Yang
and M. Y. Gao, Adv. Mater., 2003, 15, 777.
18 J. Aldana, Y. A. Wang and X. G. Peng, J. Am. Chem. Soc., 2001, 123,
8844.
19 L. R. Hou, L. Chen and S. Chen, Langmuir, 2009, 25, 2869.
20 M. H. Park, Y. Ofir, B. Samanta, P. Arumugam, O. R. Miranda and
V. M. Rotello, Adv. Mater., 2008, 20, 4185.
ꢀ
21 Y. Zhao, W. Perez-Segarra, Q. C. Shi and A. Wei, J. Am. Chem. Soc.,
2005, 127, 7328.
22 F. Dubois, B. Mahler, B. Dubertret, E. Doris and C. Mioskowski,
J. Am. Chem. Soc., 2007, 129, 482.
23 F. E. Critchfield and J. B. Johnson, Anal. Chem., 1956, 28, 430.
24 H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang and W. Li,
Adv. Mater., 2003, 15, 1712.
25 X. H. Zhong, M. Y. Han, Z. L. Dong, T. J. White and W. Knoll,
J. Am. Chem. Soc., 2003, 125, 8589.
26 J. Nanda, S. Sapra, D. D. Sarma, N. Chandrasekharan and G. Hodes,
Chem. Mater., 2000, 12, 1018.
27 Z. Tang, N. A. Kotov and M. Giersig, Science, 2002, 297, 237.
28 Y. X. Zhang, J. Guo, T. White, T. T. Y. Tan and R. Xu, J. Phys.
Chem. C, 2007, 111, 7893.
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (Grants 20606016, 10676013
NASA, 10976012 NASA), ‘‘863’’ Important National Science &
Technology Specific Project (Grant 2007AA06A402), the
Natural Science Foundation for Jiangsu Higher Education
Institutions of China (Grant 07KJA53009), National Key
Technology R&D Program in the 11th Five Year Plan of China
(2006BAE03B02-1) and doctoral thesis innovation of NJUT
(Grant No. BSCX200708).
29 N. N. Zhao, D. C. Pan, W. Nie and X. L. Ji, J. Am. Chem. Soc., 2006,
128, 10118.
30 B. Fritzinger, W. Moreels, P. Lommens, R. Koole, Z. Hens and
J. Martins, J. Am. Chem. Soc., 2009, 131, 3024.
31 N. Gaponik, D. V. Talapin, A. L. Rogach, A. Eychmuller and
H. Weller, Nano Lett., 2002, 2, 803.
32 W. H. Liu, H. S. Choi, J. P. Zimmer, E. Tanaka, J. V. Frangioni and
M. Bawendi, J. Am. Chem. Soc., 2007, 129, 14530.
33 W. M. Faustino, O. L. Malta, E. E. S. Teotonio, H. F. Brito,
References
1 J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang and
S. J. Park, Adv. Mater., 2006, 18, 2720.
ꢀ
A. M. Simas and G. F. Sa, J. Phys. Chem. A, 2006, 110, 2510.
34 M. H. Park, Y. Ofir, B. Samanta and V. M. Rotello, Adv. Mater.,
2 V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko,
J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler and
M. G. Bawendi, Science, 2000, 290, 314.
3 M. Law, H. Kind, B. Messer, F. Kim and P. D. Yang, Angew. Chem.,
Int. Ed., 2002, 41, 2405.
2009, 21, 2323.
35 C. Liu, D. M. Shen and Q. Y. Chen, J. Am. Chem. Soc., 2007, 129,
5814.
3868 | J. Mater. Chem., 2010, 20, 3863–3868
This journal is ª The Royal Society of Chemistry 2010