66
K.P. McCook et al. / Phytochemistry 82 (2012) 61–66
Collins, D.O., Buchanan, G.O., Reynolds, W.F., Reese, P.B., 2001. Biotransformation of
squamulosone by Curvularia lunata ATCC 12017. Phytochemistry 57, 377–383.
Collins, D.O., Ruddock, P.L.D., Chiverton de Grasse, J., Reynolds, W.F., Reese, P.B.,
2002. Microbial transformation of cadina-4,10(15)-dien-3-one, aromadendr-
1(10)-en-9-one and methyl ursolate by Mucor plumbeus ATCC 4740.
Phytochemistry 59, 479–488.
s, H-23), 1.07 (3H, s, H-24), 1.32 (1H, m, w/2 = 7.5 Hz, H-5), 2.47
(2H, m, w/2 = 39.5 Hz, H-2). The mycelial extract was also sub-
jected to chromatography to yield additional 23 (10.9 mg) and 24
(11.9 mg).
Farooq, A., Tahara, S., 2000. Biotransformation of two cytotoxic terpenes, a-santonin
Acknowledgements
and sclareol by Botrytis cinerea. Z. Naturforsch. 55c, 713–717.
Fraga, B.M., Guillermo, R., Hanson, J.R., Truneh, A., 1996. Biotransformation of cedrol
and related compounds by Mucor plumbeus. Phytochemistry 42, 1583–1586.
Fraga, B.M., Guillermo, R., Hernandez, M.G., Chamy, M.C., Garbarino, J.A., 2004.
Biotransformation of two stemodane diterpenes by Mucor plumbeus.
Tetrahedron 60, 7921–7932.
Hanson, J.R., 1992. The microbiological transformation of diterpenoids. Nat. Prod.
Rep. 9, 139–151.
Hanson, J.R., Nasir, H., 1993. Biotransformation of the sesquiterpenoid, cedrol, by
Cephalosporium aphidicola. Phytochemistry 33, 835–837.
Hanson, J.R., Fraga, B.M., González, P., Guillermo, R., Hernandez, M.G., Takahashi,
J.A., 1994a. The microbiological transformation of two ent-16b,17-
epoxykaurane derivatives by Gibberella fujikuroi. Phytochemistry 37, 717–721.
Hanson, J.R., Reese, P.B., Takahashi, J.A., Wilson, M.R., 1994b. Biotransformation of
some stemodane diterpenoids by Cephalosporium aphidicola. Phytochemistry
36, 1391–1393.
The authors wish to thank the University of the West Indies,
Mona/Inter-American Development Bank (UWI/IDB) Programme
for partial funding. K.P.M. acknowledges Floyd Russell, Nadale
Downer-Riley, Duanne Biggs and Paul Clare for technical assis-
tance. K.P.M. and A.R.M.C. are grateful to the University of the West
Indies for the granting of Postgraduate Scholarships and Teaching
Assistantships. Comments by the anonymous referees were very
useful for improving the quality of the manuscript.
Appendix A. Supplementary data
Hufford, C.D., Oguntimein, B.O., Muhammad, I., 1992. New stemodane diterpenes
from Stemodia maritima. J. Nat. Prod. 55, 48–52.
Supplementary data associated with this article can be found, in
Lamm, A.S., Chen, A.R.M., Reynolds, W.F., Reese, P.B., 2009. Fungal hydroxylation of
(À)-santonin and its analogues. J. Mol. Cat. B: Enzymatic 59, 292–296.
Lamm, A.S., Reynolds, W.F., Reese, P.B., 2006. Bioconversion of Stemodia maritima
diterpenes and derivatives by Cunninghamella echinulata var. elegans and
Phanerochaete chrysosporium. Phytochemistry 67, 1088–1093.
Manchand, P.S., White, J.D., Wright, H., Clardy, J., 1973. Structures of stemodin and
stemodinone. J. Am. Chem. Soc. 95, 2705–2706.
Martin, G.D.A., Reynolds, W.F., Reese, P.B., 2004a. Investigation of the importance of
the C-2 oxygen function in the transformation of stemodin analogues by
Rhizopus oryzae ATCC 11145. Phytochemistry 65, 701–710.
Martin, G.D.A., Reynolds, W.F., Reese, P.B., 2004b. Investigation of the importance of
the C-2 and C-13 functions in the transformation of stemodin analogues by
Rhizopus oryzae ATCC 11145. Phytochemistry 65, 2211–2217.
Miyazawa, M., Nankai, H., Kameoka, H., 1995. Biotransformation of (+)-cedrol by
plant pathogenic fungus, Glomerella cingulata. Phytochemistry 40, 69–72.
Monaco, P., Previtera, L., 1984. Isoprenoids from the leaves of Quercus suber. J. Nat.
Prod. 47, 673–676.
Muffler, K., Leipold, D., Scheller, M.-C., Haas, C., Steingroewer, J., Bley, T., Neuhaus,
H.E., Mirata, M.A., Schrader, J., Ulber, R., 2010. Biotransformation of triterpenes.
Process Biochem. 46, 1–15.
Parra, A., Rivas, F., Garcia-Granados, A., Martinez, A., 2009. Microbial transformation
of triterpenoids. Mini-Rev. Org. Chem. 6, 307–320.
Porter, R.B.R., Reese, P.B., Williams, L.A.D., Williams, D.J., 1995. Acaricidal and
insecticidal activities of cadina-4,10(15)-dien-3-one. Phytochemistry 40, 735–
738.
Robinson Jr., F.P., Martel, H., 1970. Betulinic acid from Arbutus menziesii.
Phytochemistry 9, 907–909.
Scott, P.M., van Walbeek, W., 1971. Cladosporin, a new antifungal metabolite from
Cladosporium cladosporioides. J. Antibiot. 24, 747–755.
References
Akihisa, T., Takamine, Y., Yoshizumi, K., Tokuda, H., Kimura, Y., Ukiya, M., Nakahara,
T., Yokochi, T., Ichiishi, E., Nishino, H., 2002. Microbial transformations of two
lupane-type triterpenes and anti-tumor promoting effects of the transformation
products. J. Nat. Prod. 65, 278–282.
Allbutt, A.D., Ayer, W.A., Brodie, H.J., Johnri, B.N., Taube, H., 1971. Cyathin, a new
antibiotic complex produced by Cyathus helenae. Can. J. Microbiol. 17, 1401–
1407.
Ata, A., Nachtigall, J.A., 2004. Microbial transformations of
Naturforsch. 59c, 209–214.
a-santonin. Z.
Ayer, W.A., Taube, H., 1973. Metabolites of Cyathus helenae. New class of
diterpenoids. Can. J. Chem. 51, 3842–3854.
Ayer, W.A., Carstens, L.L., 1973. Diterpenoid metabolites of Cyathus helenae. Cyathin
B3 and cyathin C3. Can. J. Chem. 51, 3157–3160.
Ayer, W.A., Lee, S.P., Nakashima, T.T., 1979. Metabolites of the bird’s nest fungi. Part
12. Studies on the biosynthesis of the cyathins. Can. J. Chem. 57, 3338–3343.
Ayer, W.A., Browne, L.M., Mercer, J.R., Taylor, D.R., Ward, D.E., 1978. Metabolites of
bird’s nest fungi. Part 8. Some minor metabolites of Cyathus helenae and some
correlations among the cyathins. Can. J. Chem. 56, 717–721.
Ayer, W.A., Flanagan, R.J., Reffstrup, T., 1984. Metabolites of bird’s nest fungi-19:
New triterpenoid carboxylic acids from Cyathus striatus and Cyathus pygmaeus.
Tetrahedron 40, 2069–2082.
Azerad, R., 2000. Regio- and stereoselective microbial hydroxylation of terpenoid
compounds. In: Patel, R. (Ed.), Stereoselective Biocatalysis. Marcel Decker, NY,
USA, pp. 153–176.
Bastos, D.Z.L., Pimentel, I.C., de Jesus, D.A., de Oliveira, B.H., 2007. Biotransformation
of betulinic and betulonic acids by fungi. Phytochemistry 68, 834–839.
Brodie, H.J., 1975. The Bird’s Nest Fungi. University of Toronto Press, Toronto,
Canada.
Buchanan, G.O., Reese, P.B., 2001. Biotransformation of diterpenes and diterpene
derivatives byBeauveria bassiana ATCC 7159. Phytochemistry 56, 141–151.
Chen, A.R.M., Ruddock, P.L.D., Lamm, A.S., Reynolds, W.F., Reese, P.B., 2005.
Stemodane and stemarane diterpenoid hydroxylation by Mucor plumbeus and
Whetzelinia sclerotiorum. Phytochemistry 66, 1898–1902.
Shirane, N., Hashimoto, Y., Ueda, K., Takenaka, H., Katoh, K., 1996. Ring-A cleavage of
3-oxo-olean-12-en-28-oic acid by the fungus Chaetomium longirostre.
Phytochemistry 43, 99–104.
Simeó, Y., Sinisterra, J.V., 2009. Biotransformation of terpenoids: a green alternative
for producing molecules with pharmacological activity. Mini-Rev. Org. Chem. 6,
128–134.
Sun, D.-A., Sauriol, F., Mamer, O., Zamir, L.O., 2001. Biotransformation of
4(20),11(12)-taxadiene derivative. Bioorg. Med. Chem. 9, 793–800.
a
Yogeeswari, P., Sriram, D., 2005. Betulinic acid and its derivatives: a review on their
biological properties. Curr. Med. Chem. 12, 657–666.
Collins, D.O., Reese, P.B., 2002. Biotransformation of cadina-4,10(15)-dien-3-one
and
3a-hydroxycadina-4,10(15)-diene by Curvularia lunata ATCC 12017.
Phytochemistry 59, 489–492.