Beilstein J. Org. Chem. 2020, 16, 22–31.
ORCID® iDs
matography (SiO2, cyclohexane/EtOAc, 2:1, v/v) to yield a red
solid (4 mg, 20%), which was recrystallized by slow evapora-
tion from CH2Cl2 in the dark to yield the all-E-isomer 3a.
1H NMR (400 MHz, CDCl3) δ 8.56 (t, J = 1.9 Hz, 1H), 8.53 (d,
J = 1.9 Hz, 2H), 8.11–8.03 (m, 2H), 8.03–7.97 (m, 2H),
7.88–7.83 (m, 2H), 7.61–7.50 (m, 3H), 6.27 (s, 2H), 3.94 (s,
6H), 3.92 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 163.3, 155.9,
155.8, 154.5, 154.3, 154.0, 153.6, 152.6, 149.5, 133.4, 131.8,
129.4, 129.3, 127.7, 123.8, 123.3, 120.0, 119.0, 118.6, 117.7,
114.5, 91.6, 90.7, 56.7, 55.7; HRESIMS (m/z): [M + H]+ calcd
for C28H24N7O3, 506.1935; found, 506.1935.
References
1. Dhammika Bandara, H. M.; Burdette, S. C. Chem. Soc. Rev. 2012, 41,
2. Broichhagen, J.; Trauner, D. Curr. Opin. Chem. Biol. 2014, 21,
4. Knie, C.; Utecht, M.; Zhao, F.; Kulla, H.; Kovalenko, S.; Brouwer, A. M.;
Saalfrank, P.; Hecht, S.; Bléger, D. Chem. – Eur. J. 2014, 20,
5. Hammerich, M.; Schütt, C.; Stähler, C.; Lentes, P.; Röhricht, F.;
Höppner, R.; Herges, R. J. Am. Chem. Soc. 2016, 138, 13111–13114.
6. Schweighauser, L.; Häussinger, D.; Neuburger, M.; Wegner, H. A.
7. Schweighauser, L.; Wegner, H. A. Chem. Commun. 2013, 49,
8. Slavov, C.; Yang, C.; Heindl, A. H.; Stauch, T.; Wegner, H. A.;
Dreuw, A.; Wachtveitl, J. J. Phys. Chem. Lett. 2018, 9, 4776–4781.
9. Heindl, A. H.; Becker, J.; Wegner, H. A. Chem. Sci. 2019, 10,
10.Lim, Y.-K.; Choi, S.; Park, K. B.; Cho, C.-G. J. Org. Chem. 2004, 69,
11.Lim, Y.-K.; Lee, K.-S.; Cho, C.-G. Org. Lett. 2003, 5, 979–982.
12.Yang, C.; Slavov, C.; Wegner, H. A.; Wachtveitl, J.; Dreuw, A.
13.Mills, C. J. Chem. Soc., Trans. 1895, 67, 925–933.
14.Slavov, C.; Yang, C.; Schweighauser, L.; Boumrifak, C.; Dreuw, A.;
Wegner, H. A.; Wachtveitl, J. Phys. Chem. Chem. Phys. 2016, 18,
(E)-1-(4-Methoxyphenyl)-2-(3-((E)-phenyldiazenyl)-5-((E)-
(2,4,6-trimethoxyphenyl)diazenyl)phenyl)diazene (3b): A
dry Schlenk tube under nitrogen atmosphere was charged with a
solution of 17b (78 mg, 109 µmol, 1.00 equiv), CuI (167 mg,
873 µmol, 8.0 equiv), Cs2CO3 (284 mg, 872 µmol, 8.0 equiv),
and dry DMF (2.8 mL). The tube was sealed and heated to
140 °C for 17.5 h. After cooling to rt, the mixture was filtered
through a plug of silica gel using EtOAc, and separated by two
consecutive purification steps by flash column chromatography
(SiO2, cyclohexane/EtOAc, 2:1, v/v) to yield 3b as red oil
(33 mg, 59%). The all-E-isomer was obtained by recrystalliza-
tion through slow evaporation from CHCl3 in the dark.
1H NMR (400 MHz, CDCl3) δ 8.49 (s, 3H), 8.03–7.98 (m, 4H),
7.60–7.47 (m, 3H), 7.04 (d, J = 8.9 Hz, 2H), 6.26 (s, 2H), 3.93
(s, 6H), 3.91–3.89 (m, 6H); 13C NMR (101 MHz, CDCl3)
δ 162.9, 162.6, 155.6, 155.3, 155.0, 154.1, 154.0, 153.6, 152.7,
147.1, 131.5, 129.3, 127.8, 125.2, 125.0, 123.2, 118.7, 118.2,
117.3, 116.2, 114.4, 91.6, 56.7, 55.7, 55.7; HRESIMS (m/z):
[M + H]+ calcd for C28H27N6O4, 511.2089; found, 511.2089.
15.Bellotto, S.; Reuter, R.; Heinis, C.; Wegner, H. A. J. Org. Chem. 2011,
Supporting Information
16.Asanuma, H.; Liang, X.; Komiyama, M. Tetrahedron Lett. 2000, 41,
17.Wang, Z.; Skerlj, R. T.; Bridger, G. J. Tetrahedron Lett. 1999, 40,
18.Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803–3805.
Supporting Information File 1
Additional synthetic procedures, isomerization
experiments, and 1H/13C NMR spectra.
19.Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. J. Org. Chem. 2009, 74,
20.Bílek, P.; Slouka, J. J. Heterocycl. Chem. 2002, 39, 357–361.
21.Priewisch, B.; Rück-Braun, K. J. Org. Chem. 2005, 70, 2350–2352.
22.Anwar, N.; Willms, T.; Grimme, B.; Kuehne, A. J. C. ACS Macro Lett.
23.Burns, J.; McCombie, H.; Scarborough, H. A. J. Chem. Soc. 1928,
Acknowledgements
The authors thank Elena M. Berger and Katinka Grimmeisen
for their help in the synthesis of starting materials and interme-
diates. Lea Schäfer is acknowledged for helping in the design of
the TOC figure.
24.Hansen, M. J.; Lerch, M. M.; Szymanski, W.; Feringa, B. L.
Angew. Chem., Int. Ed. 2016, 55, 13514–13518.
Funding
Financial support by the Deutsche Forschungsgemeinschaft
(DFG; WE 5601/6-1) is gratefully acknowledged.
30