Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
J. Takayama et al. / Tetrahedron Letters 44 (2003) 5159–5162
5161
Sawada, T.; Mataka, S.; Tashiro, M. Eur. J. Org. Chem.
1998, 1841; (e) Otani, T.; Takayama, J.; Sugihara, Y.;
Ishii, A.; Nakayama, J. J. Am. Chem. Soc., accepted for
publication.
4. Weinreb, S. M. In Comprehensive Organic Synthesis;
Paquette, L. A., Vol. Ed.; Pergamon Press: Oxford, UK,
1991; Vol. 5, Chapter 4.2.
5. Baldwin, J. E.; Lopez, R. C. G. J. Chem. Soc., Chem.
Commun. 1982, 1029.
6. Generation of thioformaldehyde, thioacetone, and thio-
cyclohexanone by this thermolysis method was not
reported.5
Scheme 6. Reaction of 1 with adamantanethione.
7. If RCH2S(O)SCH2R could be reproduced repeatedly and
quantitatively by the following reaction from RCH2SOH,
generated as the counterpart of RCHꢀS, the stoichiomet-
ric relationship of 1:RCH2S(O)SCH2R=1.0:0.5 would be
valid.
1
8. 3a: mp 158–159°C (dec.); H NMR (200 MHz, CDCl3) l
0.80 (s, 9H), 1.41 (s, 9H), 4.31 (dd, 1H, J=3.4, 2.0 Hz),
4.86 (d, 1H, J=2.0 Hz), 5.29 (d, 1H, J=3.4 Hz), 7.15–
7.42 (m, 5H); 13C NMR (100.6 MHz, CDCl3) l 32.2,
32.3, 33.8, 35.5, 52.6, 73.6, 75.0, 128.0, 128.5, 129.2,
136.6, 139.3, 146.6; IR (KBr) 1084 (SꢀO) cm−1. Anal.
calcd for C19H26OS2: C, 68.21; H, 7.83. Found: C, 68.43;
1
Figure 4. Conformational changes required for transition
states.
H, 7.92. 3b: mp 112–114°C; H NMR (400 MHz, CDCl3)
l 1.28 (s, 9H), 1.34 (s, 9H), 1.37 (d, 3H, J=6.7 Hz),
4.14–4.20 (m, 2H), 4.67 (d, 1H, J=1.2 Hz); 1H NMR
(300 MHz, C6D6) l 0.91 (s, 9H), 0.99 (d, 3H, J=7.0 Hz),
1.03 (s, 9H), 3.69 (dd, 1H, J=3.3, 1.7 Hz), 4.23 (dq, 1H,
J=7.0, 3.3 Hz), 4.44 (d, 1H, J=1.7 Hz); 13C NMR (100.6
MHz, CDCl3) l 17.9, 32.2, 32.8, 33.6, 35.6, 43.4, 73.0,
73.1, 138.7, 147.0; IR (KBr) 1088 (SꢀO) cm−1. Anal. calcd
for C14H24OS2: C, 61.71; H, 8.88. Found: C, 61.85; H,
The observed syn-p-face selectivity would be explained
as follows, although other explanations were proposed
previously.14 The 1-oxide 1 has a bent structure at C2
and C4 with a tilt angle of 11° (Fig. 4). Thus, for the
syn-p-face addition, the transition state can be easily
reached with a small conformational change of 1,
whereas, for the anti-face addition, a large conforma-
tional change would be required; the inversions at C1
and C4 are required. Accordingly, the activation energy
would become much smaller for the syn-p-face addi-
tion, and hence it takes place exclusively in most cases.
1
8.99. 3c: mp 126–127°C; H NMR (400 MHz, CDCl3) l
1.28 (s, 9H), 1.32 (s, 9H), 2.80 (dd, 1H, J=10.6, 1.2 Hz),
3.53 (dd, 1H, J=10.6, 3.6 Hz), 4.30 (ddd, 1H, J=3.6, 1.7,
1.2 Hz), 4.81 (d, 1H, J=1.7 Hz); 13C NMR (100.6 MHz,
CDCl3) l 32.0, 32.5, 32.5, 34.7, 34.8, 68.6, 72.2, 140.2,
145.8; IR (KBr) 1086 (SꢀO) cm−1. Anal. calcd for
C13H22OS2: C, 60.41; H, 8.58. Found: C, 60.14; H, 8.67.
1
3d: mp 105–106°C; H NMR (400 MHz, CDCl3) l 1.27
References
(s, 9H), 1.32 (s, 9H), 1.37 (s, 3H), 1.79 (s, 3H), 3.84 (d,
1H, J=2.0 Hz), 4.76 (d, 1H, J=2.0 Hz); 13C NMR
(100.6 MHz, CDCl3) l 27.6, 31.7, 31.8, 32.7, 33.7, 35.5,
1. For reviews: (a) Nakayama, J.; Sugihara, Y. Sulfur
Reports 1996, 19, 349; (b) Nakayama, J. Sulfur Reports
2000, 22, 123.
57.6, 74.3, 77.9, 141.4, 144.5; IR (KBr) 1091 (SꢀO) cm−1
.
Anal. calcd for C15H26OS2: C, 62.88; H, 9.15. Found: C,
2. (a) Pouzet, P.; Erdelmeier, I.; Ginderow, D.; Mornon,
J.-P.; Dansette, P.; Mansuy, D. J. Chem. Soc., Chem.
Commun. 1995, 473; (b) Pouzet, P.; Erdelmeier, I.; Gin-
derow, D.; Mornon, J.-P.; Dansette, P.; Mansuy, D. J.
Heterocycl. Chem. 1997, 34, 1567; (c) Nakayama, J.; Yu,
T.; Sugihara, Y.; Ishii, A. Chem. Lett. 1997, 499; (d)
Furukawa, N.; Zhang, S.-Z.; Horn, E.; Takahashi, O.;
Sato, S. Heterocycles 1998, 47, 793.
3. (a) Naperstkow, A. M.; Macaulay, J. B.; Newlands, M.
J.; Fallis, A. G. Tetrahedron Lett. 1989, 30, 5077; (b)
Treiber, A.; Dansette, P. M.; Amri, H. E.; Girault, J.-P.;
Ginderow, D.; Mornon, J.-P.; Mansuy, D. J. Am. Chem.
Soc. 1997, 119, 1565; (c) Li, Y.-Q.; Thiemann, T.;
Sawada, T.; Mataka, S.; Tashiro, M. J. Org. Chem. 1997,
62, 7926; (d) Li, Y.-Q.; Thiemann, T.; Mimura, K.;
1
63.10; H, 9.32. 3e: mp 172–173°C; H NMR (400 MHz,
CDCl3) l 1.15–1.21 (m, 1H), 1.25 (s, 9H), 1.30 (s, 9H),
1.34–1.38 (m, 1H), 1.45–1.57 (m, 4H), 1.68–1.78 (m, 2H),
1.82–1.86 (m, 1H), 2.80–2.93 (m, 1H), 3.90 (d, 1H, J=2.1
Hz), 4.71 (d, 1H, J=2.1 Hz); 13C NMR (100.6 MHz,
CDCl3) l 25.0, 25.4, 26.5, 31.7, 32.7, 33.7, 35.6, 37.0,
40.1, 65.9, 72.9, 78.0, 140.2, 144.4; IR (KBr) 1090 (SꢀO)
cm−1. Anal. calcd for C25H30OS2: C, 66.20; H, 9.26.
Found: C, 66.26; H, 9.39. 3f: mp 242–243°C (dec.); 1H
NMR (400 MHz, CDCl3) l 0.71 (s, 9H), 1.35 (s, 9H),
4.91 (d, 1H, J=2.0 Hz), 5.11 (d, 1H, J=2.0 Hz), 7.12–
7.36 (m, 10H); 13C NMR (100.6 MHz, CDCl3) l 31.4,
31.6, 34.0, 35.7, 71.7, 75.3, 75.5, 126.5, 127.0, 127.7,
127.7, 127.9, 130.0, 140.6, 143.9, 144.3, 144.7; IR (KBr)