10.1002/anie.201811080
Angewandte Chemie International Edition
COMMUNICATION
stabilized where the adsorption energy was -7.76 eV. The Na2S4
decomposition on the Ni nanocluster was found to be
significantly slower than for the Fe and Cu nanoclusters. After ~
2.3 ps of MD simulation, the total energy converged to give a
value of the adsorption energy of -7.74 eV. It was observed that
Na2S4 decomposed most rapidly on the Fe nanocluster. This
observation highlights that the Fe nanocluster possessed the
most suitable reactivity for RT/Na-S batteries.
g-1 at a high current density of 5 A g-1. Our new findings show
that these metal nanoclusters serve as electrocatalysts to rapidly
reduce Na2S4 into short-chain sulfides and thereby obviate the
shuttle effect. These novel S host cathodes should prove to be
of practical benefit in the construction of electrode materials for a
range of battery technologies.
Acknowledgements
This research was supported by the Australian Research
Council (ARC) (FL170100154, DP160104866, DP170104464
and DE170100928), the Commonwealth of Australia, through
the Automotive Australia 2020 Cooperative Research Centre
(Auto CRC).
Keywords: Metal nanoclusters • novel S hosts •
electrocatalysts• shuttle effect• room temperature Na/S batteries
[1]
[2]
a) S. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu, Z. Tu, L. Ma, L.
A. Archer, Nat. Commun. 2016, 7, 11722; b) Xin, Y. X. Yin, Y. G.
Guo, L. J. Wan, Adv. Mater. 2014, 26, 1261; c) J. Wang, J. Yang,
Y. Nuli, R. Holze, Electrochem. Commun. 2007, 9, 31.
a) P. Li, L. Ma, T. Wu, H. Ye, J. Zhou, F. Zhao, N. Han, Y. Wang, Y.
Wu, Y. Li, J. Lu, Adv. Energy Mater. 2018, 8, 1800624; b) X. Xu, D.
Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rojo, M.
Armand, G. Wang, Nat. Commun. 2018, 9, 3870; c) X. Yu, A.
Manthiram, Chem. Mater. 2016, 28, 896.
Figure 4 a-c, Na2S4 on Fe6, Cu6, and Ni6 nanoclusters in the
initial state at 0 ps, and at 5 ps. d, adsorption energies (eV) of
Na2S4 on metal nanoclusters as a function of ab initio molecular
dynamics simulation time (fs).
The ability of these three cathode materials to chemically
adsorb polysulfides was evaluated by exposing Na2S4 to S@Fe-
HC, S@Cu-HC and S@Ni-HC (Figure S17). The Na2S4 solution
exhibited a peak for S42 at ~ 313 cm-1. [22] When the solution was
[3]
Z. Qiang, Y. M. Chen, Y. Xia, W. Liang, Y. Zhu, B. D. Vogt, Nano
Energy 2017, 32, 59;
X. Yu, A. Manthiram, J. Phys. Chem. Lett. 2014, 5, 1943-1947.
D. J. Lee, J. W. Park, I. Hasa, Y. K. Sun, B. Scrosati, J. Hassoun, J.
Mater. Chem. A 2013, 1, 5256.
Y. X. Wang, J. Yang, W. Lai, S. L. Chou, Q. F. Gu, H. K. Liu, D.
Zhao, S. X. Dou, J. Am. Chem. Soc. 2016, 138, 16576.
Q. Lu, X. Wang, J. Cao, C. Chen, K. Chen, Z. Zhao, Z. Niu, J.
Chen, Energy Storage Materials 2017, 8, 77.
S. Wei, L. Ma, K. E. Hendrickson, Z. Tu, L. A. Archer, J. Am. Chem.
Soc. 2015, 137, 12143.
[4]
[5]
[6]
[7]
[8]
[9]
G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z. W. Seh, D.
Zhuo, Y. Liu, J. Sun, J. Zhao, C. Zu, D. S. Wu, Q. Zhang, Y. Cui,
Proc. Natl. Acad. Sci. USA 2017, 114, 840.
exposed to S@Fe-HC this disappeared and another peak at ~
2- [1a]
252 cm-1 appeared. This finding is attributed to S2
.
For the
solutions exposed to S@Cu-HC and S@Ni-HC the intensity of
the S42- peak decreased, and the S22- peak evolved. This finding
suggests that part of Na2S4 are converted to Na2S2. These
findings indicated that S@Fe-HC gave the most efficient
confinement of the polysulfides and electrocatalytically
transformed these into short-chain sulfides – a finding consistent
with corresponding DFT results. The electrochemical
performance of the Fe/HC plain matrix is presented in Figures
S18 and S19 in which the capacity contribution can be seen to
be negligible for S@Fe-HC. Schematic illustrations of the M
nanocluster electrode mechanism are presented as Figure S20.
These M nanoclusters enhance the reactivity of S by formation
M-S chemical bonds and bind polysulfide dissolution, and then
catalyzed into short-chain sulfides.
[10]
[11]
Q. Pang, D. Kundu, M. Cuisinier, L. F. Nazar, Nat. commun. 2014,
5, 4759
D. Ma, Y. Li, J. Yang, H. Mi, S. Luo, L. Deng, C. Yan, M. Rauf, P.
Zhang, X. Sun, X. Ren, J. Li, H. Zhang, Adv. Funct. Mater. 2018,
28, 1705537.
S. Zheng, P. Han, Z. Han, P. Li, H. Zhang, J. Yang, Adv. Energy
Mater. 2014, 4, 1400226.
B. W. Zhang, Y. D. Liu, Y. X. Wang, L. Zhang, M. Z. Chen, W. H.
Lai, S. L. Chou, H. K. Liu, S. X. Dou, ACS Appl. Mater. Interfaces
2017, 9, 24446.
Y. Yao, L. Zeng, S. Hu, Y. Jiang, B. Yuan, Y. Yu, Small 2017, 13,
1603513.
B. W. Zhang, T. Sheng, Y. D. Liu, Y. X. Wang, L. Zhang, W. H. Lai,
L. Wang, J. Yang, Q. F. Gu, S. L. Chou, H. K. Liu, S. X. Dou, Nat.
Commun. 2018, 9, 4082.
a) G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011,
332, 443; b) H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y.
Zheng, S. Z. Qiao, Chem. Rev. 2018, 118, 6337.
Q. Zhao, X. F. Hu, K. Zhang, N. Zhang, Y. X. Hu, J. Chen, Nano
Lett. 2015, 15, 721.
a) B. Zhang, X. Qin, G. R. Li, X. P. Gao, Energy Environ. Sci. 2010,
3, 1531; b) J. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Adv.
Funct. Mater. 2003, 13, 487.
T. H. Hwang, D. S. Jung, J. S. Kim, B. G. Kim, J. W. Choi, Nano
Lett. 2013, 13, 4532.
G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C.
Zhan, Q. Liu, T. Wu, Z. Jian, R. Shahbazian-Yassar, Y. Ren, D. J.
Miller, L. A. Curtiss, X. Ji, K. Amine, Nat. Energy 2017, 2, 17090.
a) G. Kresse, J. Hafner, Phy. Rev. B 1994, 49, 14251; b) G.
Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15.
H. Al Salem, V. R. Chitturi, G. Babu, J. A. Santana, D.
Gopalakrishnan, L. M. Reddy Arava, RSC Adv. 2016, 6, 110301.
[12]
[13]
[14]
[15]
[16]
[17]
[18]
In conclusion, we have designed and tested a new class of
sulfur hosts as three transition metal (Fe, Cu, and Ni)
nanoclusters (~ 1.2 nm) wreathed on hollow carbon
[19]
[20]
nanospheres for RT-Na/S batteries, and hypothesized
a
chemical couple between the metal nanoclusters and sulfur that
assists in immobilization of sulfur and enhances conductivity and
activity. Of these, S@Fe-HC was found to exhibit an
unprecedented reversible capacity of 394 mAh g-1 despite 1000
cycles at 100 mA g-1, together with a rate capability of 220 mAh
[21]
[22]
This article is protected by copyright. All rights reserved.