were weak inhibitors of the COX-1 isozyme but showed
moderate COX-2 isozyme inhibitory effects (IC50: from 0.27 μM
to 0.41 μM) and COX-2 selectivity indexes (SI: 19.7 to 10.4).
Additionally, the activity of compound 2c (IC50=0.28 μM,
SI=18.6) was more similar to inhibitors of the COX-2 isozyme
than the reference drug celecoxib (IC50 =0.27 μM, SI=19.7). The
results indicated that the molecular hybridization of benzo[d]
thiazole pharmacophore of the COX-2 inhibitors was a useful
building block to produce effective hybrid scaffolds with
improved analgesic and anti-inflammatory effect potential.
347.
2. Cindrić, M.; Perić, M.; Kralj, M.; Martin-Kleiner, I.;David-
Cordonnier, M.H.; Paljetak, H.Č.; Matijašić, M.; Verbanac,
D.; Karminski-Zamola, Grace.; Hranjec, M. Mol. Div. 2018,
22, 637.
3. Akhtar, T.; Hameed, S.; Al-Masoudi, N.A.; Loddo, R.; La
Colla, P. Acta Pharm. 2008, 58, 135.
4. Nagararaju, G.; Sai, K.B.; Chandana, K.; Guldipati, M.,
Suresh, P.V.; Ramarao, N. Indo. Amer. J. Pharm. Res. 2015,
5, 1288.
Table 2. COX-1/COX-2 enzyme inhibition assay in vitro
Compounds
COX-1, IC50(μM) a
COX-2, IC50(μM) COX-2, SI b
18.6
16.8
7.2
2c
5.22±0.10
6.20±0.15
0.28±0.12
0.37±0.19
2d
2g
5.55±0.20
5.32±0.26
4.28±0.18
5.08±0.14
5.33±0.11
0.77±0.29
0.50±0.08
0.41±0.26
0.36±0.03
0.27±0.07
5. Akhilesh, G.; Swati, R. J. Chem. Pharm. Res. 2010, 2, 244.
10.6
10.4
14.1
19.7
3d
3f
6. Keri, R.S.; Quintanova, C.; Marques, S.M.; Esteves, A.R.;
Cardoso, S.M.; Santos, M.A. Bioorg. Med. Chem. 2013, 21,
4559.
3g
Celecoxib
a
7. Wang, S.; Chen, Y.; Zhao, S.; Xu, X.; Liu, X.; Liu, B.F.;
IC50 value is the compound concentration required to produce 50%
inhibition of COX-1 or COX-2 for means of three determinations and
deviation from the mean is <10% of the mean value.
Zhang, G. Bioorg. Med. Chem. Lett. 2014, 24, 1766.
8. Rouf,A.; Tanyeli, C. Eur. J. Med. Chem. 2015, 97, 911.
9. Venu,T.D.; Shashikanth, S.; Khanum, S.A.; Naveen, S.;
Firdouse, A.; Sridhar, M. A.; Prasad, J.S. Bioorg. Med.Chem.
2007, 15, 3505.
10. Ottana, R.; Maccari, R.; Barreca, M.T.; Bruno, G.; Rotondo,
A.; Rossi, A.; Chiricosta, G.; Paola, R.; Sautebin, L.;
Cuzzocrea, S.; Vigorita, M.G. Bioorg. Med. Chem. 2005, 13,
4243.
11. Gouvea, D.P.; Vasconcellos, F.A.; Berwaldt, Gabriele dos A.;
Seixas Neto, A.C. P.; Fischer, G.; Sakata, R.P.; Almeida,
W.P.; Cunico, W. Eur. J. Med. Chem. 2016, 118, 259.
13. Lozynskyi, A. V.; Kaminskyy, D. V.; Romanchyshyn, Kh.
B.; Semenciv, N. G.; Ogurtsov, V. V.; Nektegayev, I. O.;
Lesyk, R. B. Biopolymers and Cell. 2015, 31, 131.
14. Venkatesh, P.; Pandeya, S.N. Int. J. ChemTech Res. 2009, 1,
1354.
b SI: selectivity index (COX-1 IC50/COX-2 IC50).
In conclusion, 25 benzo[d]thiazole compounds bearing a
benzyloxy or phenoxylethoxyl moiety were designed, synthesiz-
ed and evaluated for their anti-inflammatory and analgesic
activities. The results indicated that 18 compounds displayed the
anti-inflammatory effects, 20 compounds showed the analgesic.
Among them, compounds 2d and 3d exhibited the most anti-
inflammatory with inhibition of inflammation of 90.7 % and 94.6
%. Next, compounds 2c, 2d, 2g, 3d, 3f, 3g that displayed the
excellent anti-inflammatory and analgesic activities were
evaluated for their inhibitory effect against ovine COX-1 and
COX-2, compounds 2c, 2d, 2g, 3d, 3f, 3g were weak inhibitors
of the COX-1 isozyme but showed moderate COX-2 isozyme
inhibitory activities IC50 from 0.28 μM to 0.77 μM) and COX-2
selectivity indexes (SI: 18.6 to 7.2). Hence, these compounds
reported herein are promising starting points for the development
of an inhibitor of COX-2.
15. Eleftheriou, P.; Geronikaki, A.; Hadjipavlou-Litina, D.;
Vicini, P.; Filz, O.; Filimonov, D.; Poroikov, V.;
Chaudhaery, S.S.; Roy, K.K.; Saxena, A.K. Eur. J. Med.
Chem. 2012, 47, 111.
This research was funded by the National Natural Science
Foundation of China (No. 2196017).
16. Raghavendra, N.M.; Jyothsna, A.; Venkateswara Rao, A.;
Subrahmanyam, C.V.S. Bioorg. Med. Chem. Lett. 2012, 22,
820.
17. Demir Özkay, Ü.; Kaya, C.; Acar Çevik, U.; Devrim Can, Ö.
Molecules 2017, 22, 1490.
18. Haroun, M.; Tratrat, C.; Kositzi, K.; Tsolaki, E.; Petrou, A.;
Aldhubiab, B.; Attimarad, M.; Harsha, S.; Geronikaki, A.;
Venugopala, K.N.; Elsewedy, H.S.; Sokovic, M.; Glamoclija,
J.; Ciric, A. Current Topics in Med. Chem. 2018, 18, 75.
19. A stirred solution of benzothiazolone (3.0 mmol), anhydrous
K2CO3 (3.0 mmol) and 5 mL DMF were placed to round-
bottomed flask, the reaction solution was mixed for 1 hour at
60 °C, after that, 1.2 mmol 4-fluorobrominated benzyl was
placed slowly to the reaction solution. The reaction solution
was refluxed for five h, the reaction process was determined
by TLC. The filtrate was cleaned through acetone. The
removal of solution by vacuum distillation, the crude
products was purified with MeOH. The yield, melting point,
and spectral data of each compound are given as below.