1484
Y.-J. Shue et al. / Tetrahedron Letters 44 (2003) 1481–1485
4. For instance: (a) Chiusoli, G. P.; Salerno, G. In The
Chemistry of the MetalꢀCarbon Bond; Hartley, F. R.;
Patai, S., Eds.; John Wiley & Sons: Chichester, UK,
1985; Vol. 3, Chapter 3.1, p. 143; (b) Tsuji, J. In The
Chemistry of the MetalꢀCarbon Bond; Hartley, F. R.;
Patai, S., Eds.; John Wiley & Sons: Chichester, UK,
1985; Vol. 3, Chapter 3.2, p. 163; (c) Sato, F. In The
Chemistry of the MetalꢀCarbon Bond; Hartley, F. R.;
Patai, S., Eds.; John Wiley & Sons: Chichester, UK,
1985; Vol. 3, Chapter 3.3, p. 200; (d) Ba¨ckvall, J. E. In
Advances in Metal-Organic Chemistry; Liebeskind, L. S.,
Ed.; JAI Press: Greenwich, CT, 1989; Vol. 1, p. 135.
5. (a) Heck, R. F. Palladium Reagents in Organic Synthesis;
Academic Press: London, 1985; (b) Goldeski, S. A.
Nucleophiles with Allyl-Metal Complexes. In Compre-
hensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.;
Pergamon Press: New York, 1991; Vol. 4, Chapter 3.3;
(c) Harrington, P. J. Transition Metal Allyl Complexes:
Pd, W, Mo-Assisted Nucleophilic Attack. In Comprehen-
sive Organometallic Chemistry II; Abel, E. W.; Stone, F.
G. A.; Wilkinson, G., Eds.; Pergamon Press: New York,
1995; Vol. 12, Chapter 8.2; (d) Tsuji, J. Palladium
Reagents and Catalysts; John Wiley & Sons: New York,
1995.
Scheme 2.
ceeds through tandem allylic substitution reactions
between 2,3-diaminonaphthalene and 2-butene-1,4-diol
via p-allylpalladium intermediates.
We have shown that palladium(0)-catalyzed amination
of allylic alcohols using aminonaphthalenes is a simple
and efficient route for CꢀN bond formation. The addi-
tion of Ti(OPri)4 to promote the palladium-catalyzed
allylꢀOH bond cleavage remarkably enhanced both the
reaction rate and yield. The amination of allylic alco-
hols worked well with aminonaphthalenes, generally
giving good yields of the corresponding N-allylic naph-
thylamines. When the allylic alcohol is unsubstituted
2b, the reaction is relatively fast, and high yields of the
desired products are obtained. If the alcohol (and thus
the p-allyl complex) is substituted, good chemical yields
are still obtained, but the reaction proceeds more
slowly, and mixtures of isomers are obtained.
,
6. (a) Connell, R. D.; Rein, T.; Akermark, B.; Helquist, P.
J. Org. Chem. 1988, 53, 3845; (b) Sakamoto, M.;
Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1996,
69, 1065.
7. (a) Trost, B. M. Acc. Chem. Res. 1980, 13, 385; (b)
Backvall, J. E. Acc. Chem. Res. 1983, 16, 335; (c) Tsuji,
M.; Minami, I. Acc. Chem. Res. 1987, 20, 140; (d) Tsuji,
M.; Minami, I. Acc. Chem. Res. 1987, 20, 140; (e) Trost,
B. M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1173; (f)
Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1989, 28, 38;
(g) Tsuji, J. Synthesis 1990, 739; (h) Trost, B. M. Pure
Appl. Chem. 1992, 64, 315; (i) Backvall, J. E. Pure Appl.
Chem. 1992, 64, 429; (j) Frost, C. G.; Howarth, J.;
Williams, J. M. J. Tetrahedron: Asymmetry 1992, 3, 1089;
(k) Giambastiani, G.; Poli, G. J. Org. Chem. 1998, 63,
9608; (l) Uozumi, Y.; Danjo, H.; Hayashi, T. J. Org.
Chem. 1999, 64, 3384.
8. (a) Tsuji, J.; Shimizu, I.; Minami, I.; Ohashi, Y. Tetra-
hedron Lett. 1982, 23, 4809; (b) Trost, B. M.; Hung, M.
H. J. Am. Chem. Soc. 1983, 105, 7757; (c) Takahashi, T.;
Jinbo, Y.; Kitamura, K.; Tsuji, J. Tetrahedron Lett. 1984,
25, 5921; (d) Tsuji, J.; Shimizu, I.; Minami, I.; Ohashi,
Y.; Sugiura, T.; Takahashi, K. J. Org. Chem. 1985, 50,
1523; (e) Stary, I.; Kocovsky, P. J. Am. Chem. Soc. 1989,
111, 4981; (f) Stary, I.; Zajicek, J.; Kocovsky, P. Tetra-
hedron 1992, 48, 7229; (g) Goux, C.; Massacret, M.;
Lhoste, P.; Sinou, D. Organometallics 1995, 14, 4585; (h)
Deardorff, D. R.; Savin, K. A.; Justman, C. J.; Karan-
jawala, Z. E.; Sheppeck, J. E., II; Hager, D. C.; Aydin,
N. J. Org. Chem. 1996, 61, 3616; (i) Moreno-Manas, M.;
Morral, L.; Pleixats, R. J. Org. Chem. 1998, 63, 6160.
9. (a) Minami, I.; Ohashi, Y.; Shimizu, I.; Tsuji, J. Tetra-
hedron Lett. 1985, 26, 2449; (b) Minami, I.; Yuhara, M.;
Tsuji, J. Tetrahedron Lett. 1987, 28, 2737; (c) Hayashi, T.;
Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1987, 28, 4837.
10. (a) Ziegler, F. E.; Kneisley, A.; Wester, R. T. Tetrahedron
Lett. 1986, 27, 1221; (b) Ziegler, F. E.; Wester, R. T.
Tetrahedron Lett. 1986, 27, 1225; (c) Ziegler, F. E.; Cain,
W. T.; Kneisley, A.; Stirchak, E. P.; Wester, R. T. J. Am.
Chem. Soc. 1988, 110, 5442.
Acknowledgements
We gratefully acknowledge the National Science Coun-
cil of the Republic of China for financial support.
References
1. Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R.
G. Principles and Applications of Organotransition Metal
Chemistry; University Science Books: Mill Valley, CA,
1987.
2. One reaction of this type is the hydroamination of alke-
nes and alkynes. For leading references see the following
nine citations: (a) Hegedus, L. S.; Allen, G. F.; Bozell, J.
J.; Waterman, E. L. J. Am. Chem. Soc. 1978, 100, 5800;
(b) Pez, G. P.; Galle, J. E. Pure Appl. Chem. 1985, 57,
1917; (c) catalysis with a low-valent arylamido complex
has been reported, although turnover numbers are not
high: Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J.
Am. Chem. Soc. 1988, 110, 6738 and references cited
therein; (d) Gagne´, M. R.; Marks, T. J. J. Am. Chem.
Soc. 1989, 111, 4108; (e) Gagne´, M. R.; Nolan, S. P.;
Marks, T. J. Organometallics 1990, 9, 1716; (f) Walsh, P.
J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc.
1992, 114, 1708; (g) McGrane, P. L.; Jensen, M.; Living-
house, T. J. Am. Chem. Soc. 1992, 114, 5459; (h)
Baranger, A. M.; Walsh, P. J.; Bergman, R. G. J. Am.
Chem. Soc. 1993, 115, 2753; (i) Brunet, J.; Commenges,
G.; Neibecker, D.; Philippot, K. J. Organomet. Chem.
1994, 469, 221.
3. Gilson, M. S.; Bradshaw, W. Angew. Chem., Int. Ed.
Engl. 1968, 7, 919.