ACCEPTED MANUSCRIPT
Reference
Reaction
time (h)
Conversion
ΣselC8§
(%)
[1] (a) C. Sanchez, K. J. Shea, S. Kitagawa, Chem. Soc. Rev. 40 (2011)
471;
0
4
8
12
16
20
24
0
0
0
0
5.63
0
(b)H. L. Jiang, Q. Xu, Chem. Commun. 47 (2011) 3351.
[2] B. Saparov, D. B. Mitzi, Chem. Rev. 116 (2016) 4558.
[3] (a) Y. P. Chen, Y. Liu, D. Liu, M. Bosch, H. C. Zhou, J. Am. Chem.
Soc. 137 (2015) 2919;
68.28 14.92
71.70 13.68
75.17 12.04
77.47 11.61
79.49 10.21
16.79
14.46
12.47
10.45
9.69
99.99
99.67
99.56
99.44
99.36
99.24
11.49
15.94
20.78
24.82
28.86
(b) Q. L. Zhu, Q. Xu, Chem. Soc. Rev. 43 (2014) 5468;
(c) Y. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 43 (2014)
5657.
82.66
8.83
7.73
[4] (a) S. C. Xiang, Y. B. He, Z. J. Zhang, H. Wu, W. Zhou, R. Krishna,
B. L. Chen, Nat. Commun. 3 (2012) 954;
Reaction conditions: compound 1 (20 mg), cis-cyclooctene (10 mL),
TBHP (0.5 mL), 80 ºC, 24 h, atmospheric pressure.
(b) S. C. Xiang, Z. J. Zhang, C. G. Zhao, K. L. Hong, X. B. Zhao, D.
R. Ding, M. H. Xie, C. D. Wu, M. C. Das, R. Gill, K. M. Thomas,
B. L. Chen, Nat. Commun. 2 (2011) 204.
§Total selectivity to C8 partial oxidation products.
[5] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim,
Nature. 404 (2000) 982.
[6] S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y.
Kinoshita, S. Kitagawa, J. Am. Chem. Soc. 129 (2007) 2607.
[7] J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. B. T. Nguyena, J.
T. Hupp, Chem. Soc. Rev. 38 (2009) 1450.
[8] M. Kurmoo, Chem. Soc. Rev. 38 (2009) 1353.
[9] S. C. Xiang, X. T. Wu, J. J. Zhang, R. B. Fu, S. M. Hu, X. D. Zhang,
J. Am. Chem. Soc. 127 (2005) 16352.
[10] Y. M. Li, H. J. Lun, C. Y. Xiao, Y. Q. Xu, L. Wu, J. H. Yang, J. Y.
Niu, S. C. Xiang, Chem. Commun. 50 (2014) 8558.
[11] H. Xu, S. S. Tao, D. L. Jiang, Nat. Mater, 5 (2016) 722.
[12] M. Sadakiyo, T. Yamada, H. Kitagawa, Inorg. Chem. Commun. 72
(2016) 138.
[13] A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkovc, F.
Verpoort, Chem. Soc. Rev. 44 (2015) 6804.
[14] (a) G. J. Zhang, H. Li, F. F. Zhao, H. L. Hu, H. Huang, H. T. Li, X.
Han, R. H. Liu, H. Dong, Y. Liu, Z. H. Kang, Dalton T, 42 (2013)
9423;
(b) J. X. Ma, J. R. Guo, H. L. Wang, B. Li, T. L. Yang, B. L. Chen,
Inorg. Chem, 56 (2017) 7145.
[15] G. Tuci, G. Giambastiani, S. Kwon, P. C. Stair, R. Q. Snurr, A.
Rossin, ACS. Catal. 4 (2014) 1032.
In order to further confirm the two compounds for this
reaction of the catalyst, we were carried out two groups of blank
test (no compounds, other experimental conditions unchanged)
and the filtrate experiment (when the experiment to 24 h after
the catalyst removed, the remaining filtrate continued to react
for 24 h to verify that the filtrate did not participate in the
catalytic reaction). The conversion rates of the two blank sets
were all 0, indicating that the reaction was not carried out when
catalyst was not involved in the reaction. The conversion rates
of the two groups of filtrate experiments were all 0, indicating
that the filtrate after the reaction did not participate in the
reaction. It can be shown that compound 1 and compound 2 act
as heterogeneous catalyst in the experiments of cis-cyclooctane
catalytic oxidation. In order to test the stability of the two kinds
of catalysts, we did five times the same repeated trials under the
same conditions with the catalysts which were separated from
the reaction solution, washed several times with
dichloromethane to remove the physisorbed molecules and dried
after the first catalytic run. As shown in Figure 3c and 3d, cis-
cyclooctene conversion rate and selectivity of reaction products
are no change with almost. All above-mentioned catalytic
experiments show that compound 1 and compound 2 indeed act
as heterogeneous catalyst in the present catalytic system.
[16] J. G. S. Moo, M. Pumera, Chem-Eur. J. 21 (2015) 58.
[17] S. A. Matlin, G. Mehta, H. Hopf, A. Krief, Nat. Chem. 7 (2015)
941.
[18] L. Zhou, J. Liu, W. B. Ji, H. Huang, H. L. Hu, Y. Liu, Z. H. Kang,
J. Mater. Chem. A. 2 (2014) 12686.
[19] L. P. Qian, Z. Wang, E. V. Beletskiy, J. Y. Liu, H. J. D. Santos, T.
H. Li, M. D. C. Rangel, M. C. Kung, H. H. Kungb, Nat. Commun,
8 (2017) 1.
[20] (a)H. Noh, Y. X. Cui, A. W. Peters, D. R. Pahls, M. A. Ortuño, N.
A. Vermeulen, C. J. Cramer, L. Gagliardi, J. T. Hupp, O. K. Farha,
J. Am. Chem. Soc. 138 (2016) 14720;
In summary, two new compounds based on dsd ligands and
4,4'-bpy ligands with Co metal salts have been synthesized and
characterized. The catalytic experiment indicates that compound
1 and compound 2, directly used as a heterogeneous catalyst
without any supports, possess excellent catalytic ability for the
selective oxidation of cis-cyclooctene. Considering that there
are a large number of possible organic ligands and metal ions
that can be used in this synthetic strategy, the results presented
here may open a promising route for the design and fabrication
of other novel coordination polymers with high catalytic
performance. Significantly, this work provides an exciting
prospect for the application of coordination polymer in catalytic
reactions. Further work is underway in our laboratories.
(b) A. Patel, R. Sadasivan, Inorg Chim Acta. 458 (2017) 101;
(c) L. S Feng, J. S. Maass, R. L. Luck, Inorg Chim Acta. 373 (2011)
85;
(d) A. Schröckeneder, P. Traar, G. Raber, J. Baumgartner, F. Belaj,
N. C. M. Zanetti, Inorg. Chem. 48 (2009) 11608;
(e) A. Sachse, N. C. M. Zanetti, G. Lyashenko, J. W. Wielandt, K.
Most, J. Magull, F. D. Antonia, A. Pal, R. H. Irmer, Inorg. Chem.
46 (2007) 7129.
[21] S. D. Rosa, G. Giordano, T. Granato, A. Katovic, A. Siciliano, F.
Tripicchio, J. Agric. Food. Chem. 53 (2005) 8306.
[22] (a) E. Iglesia, Appl. Catal. A. 161 (1997) 59;
(b) R. Oukaci, A. H. Singleton, J. G. Goodwin, Appl. Catal. A. 186
(1999) 129.
Acknowledgments
[23] (a) P. J. V. Berge, J. V. D. Loosdrecht, S. Barradas, A. M. V. D.
Kraan, Catal. Today. 58 (2000) 321;
This work was financially supported by the National Nature Science
Foundation of China under Grant: NSFC No. 21373002 and 21503020.
Supported by the doctoral fund of Liaoning Province of China (No.
201601347).
(b) G. Jacobs, T. K. Das, Y. Q. Zhang, J. L. Li, G. Racoillet, B. H.
Davis, Appl. Catal. A. 233 (2002) 263.
[24] R. M. Thomas, P. C. B. Widger, S. M. Ahmed, R. C. Jeske, W.
Hirahata, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 132
(2010) 16520.
Appendix A. Supplementary material
Crystallographic data for the structural analysis have been deposited
with the Cambridge Crystallographic Data Center, CCDC-1572057 for
compound 1 and CCDC-1572058 for compound 2. These data can be
obtained free of charge from The Cambridge Crystallographic Data
containing XRPD, IR, TG and together with tables of compounds 1 and
2.
[25] D. K. Zhong, D. R. Gamelin, J. Am. Chem. Soc. 132 (2010) 4202.
3