Chemistry - A European Journal
10.1002/chem.202004793
RESEARCH ARTICLE
Caram, O. T. Bruns, D. Franke, R. A. Day, E. P. Farr, M. G.
Bawendi, E. M. Sletten, Angew. Chem. Int. Ed. 2017, 56,
Conclusion
1
3126–13129; e) K. S. de Valk, H. J. Handgraaf, M. M.
We have developed a new synthetic route to tertiary amine-
substituted 3-cyanoformazans and used it to carry out a
systematic investigation of the unusually low absorption and
Deken, B. G. Sibinga Mulder, A. R. Valentijn, A. G. Terwisscha
van Scheltinga, J. Kuil, M. J. van Esdonk, J. Vuijk, R. F.
Bevers, K. C. Peeters, F. A. Holman, J. V. Frangioni, J.
Burggraaf, A. L. Vahrmeijer, Nat. Commun. 2019, 10, 3118.
a) R. R. Nani, A. P. Gorka, T. Nagaya, H. Kobayashi, M. J.
Schnermann, Angew. Chem. Int. Ed. 2015, 54, 13635‒13638;
b) J. B. Wu, T.-P. Lin, J. D. Gallagher, S. Kushal, L. W. K.
Chung, H. E. Zhau, B. Z. Olenyuk, J. C. Shih, J. Am. Chem.
Soc. 2015, 137, 2366‒2374; c) K. Sato, N. Sato, B. Xu, Y.
Nakamura, T. Nagaya, P. L. Choyke, Y. Hasegawa, H.
Kobayashi, Sci. Transl. Med. 2016, 8, 352ra110; d) Z. He, L.
Zhao, Q. Zhang, M. Chang, C. Li, H. Zhang, Y. Lu, Y. Chen,
Adv. Funct. Mater. 2020, 30, 1910301; e) Z. Hu, C. Fang, B.
Li, Z. Zhang, C. Cao, M. Cai, S. Su, X. Sun, X. Shi, C. Li, T.
Zhou, Y. Zhang, C. Chi, P. He, X. Xia, Y. Chen, S. S. Gambhir,
Z. Cheng, J. Tian, Nat. Biomed. Eng. 2020, 4, 259–271.
2
photoluminescence energies of BF formazanate dyes 2a−2d.
[
3]
Cyclic voltammetry experiments and electronic structure
calculations suggest that the NIR transitions in all of these dyes
involve the HOMO-LUMO pair, but occur by different
mechanisms. Detailed TDDFT and photophysical studies reveal
that the electronic transitions of dyes 2a−2c (abs = 728−760 nm
and PL = 834−902 nm in toluene) are best described as *
with little to no charge transfer. The energies of these transitions
exhibit greater sensitivity to solvent variation in the near-planar
excited states (photoluminescence solvatochromism) than in the
nonplanar ground-state structures. The electronic transitions in
dye 2d (abs = 691 nm and PL = 904 nm in toluene) are also of
[
4]
a) L. Ke, J. Min, M. Adam, N. Gasparini, Y. Hou, J. D. Perea,
W. Chen, H. Zhang, S. Fladischer, A.-C. Sale, E. Spiecker, R.
R. Tykwinski, C. J. Brabec, T. Ameri, Adv. Energy Mater.
* type, but have a strong charge-transfer character and
2016, 6, 1502355; b) C. Yang, J. Zhang, W.-T. Peng, W.
exhibit even larger Stokes shifts.
Sheng, D. Liu, P. S. Kuttipillai, M. Young, M. R. Donahue, B.
G. Levine, B. Borhan, R. R. Lunt, Sci. Rep. 2018, 8, 16359; c)
C. Yang, M. Moemeni, M. Bates, W. Sheng, B. Borhan, R. R.
Lunt, Adv. Opt. Mater. 2020, 8, 1901536.
In summary, this work demonstrates the exciting feasibility of
NIR dyes consisting of relatively small -electron systems and
suggests that significant charge transfer is not a prerequisite for
their NIR activity. These findings open new strategies for
enhancing the functionality of luminescent compounds used in
materials chemistry and chemical biology arenas.
[5]
a) S. Zhu, R. Tian, A. L. Antaris, X. Chen, H. Dai, Adv. Mater.
2019, 31, e1900321; b) P. Liu, X. Mu, X.-D. Zhang, D. Ming,
Bioconjug. Chem. 2020, 31, 260‒275; c) S. Wang, B. Li, F.
Zhang, ACS Cent. Sci. 2020, 6, 1302‒1316.
[
6]
a) H. Wu, S. C. Alexander, S. Jin, N. K. Devaraj, J. Am.
Chem. Soc. 2016, 138, 11429‒11432; b) Q. Yang, Z. Hu, S.
Zhu, R. Ma, H. Ma, Z. Ma, H. Wan, T. Zhu, Z. Jiang, W. Liu, L.
Jiao, H. Sun, Y. Liang, H. Dai, J. Am. Chem. Soc. 2018, 140,
Acknowledgements
1715‒1724; c) B. Li, L. Lu, M. Zhao, Z. Lei, F. Zhang, Angew.
This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada (F.L.B.:
PGS-D Scholarship; R.R.M.: CGS-D Scholarship; V.N.S.: DG,
RGPIN-2020-06420; J.B.G.: DG, RGPIN-2018-04240), the
Ontario Ministry of Research and Innovation (J.B.G.: ERA, ER-
Chem. Int. Ed. 2018, 57, 7483–7487; d) M. Grzybowski, M.
Taki, K. Senda, Y. Sato, T. Ariyoshi, Y. Okada, R. Kawakami,
T. Imamura, S. Yamaguchi, Angew. Chem. Int. Ed. 2018, 57,
10137‒10141.
[
[
7]
8]
a) Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E.
Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, Z. Tian,
ACS Nano 2018, 12, 1350‒1358; b) K. H. Kim, S. Singha, Y.
W. Jun, Y. J. Reo, H. R. Kim, H. G. Ryu, S. Bhunia, K. H. Ahn,
Chem. Sci. 2019, 10, 9028‒9037; c) S. Wang, J. Liu, C. C.
Goh, L. G. Ng, B. Liu, Adv. Mater. 2019, 31, e1904447.
a) K. Cheng, H. Chen, C. H. Jenkins, G. Zhang, W. Zhao, Z.
Zhang, F. Han, J. Fung, M. Yang, Y. Jiang, L. Xing, Z. Cheng,
ACS Nano 2017, 11, 12276‒12291; b) E. Y. Zhou, H. J. Knox,
C. J. Reinhardt, G. Partipilo, M. J. Nilges, J. Chan, J. Am.
Chem. Soc. 2018, 140, 11686‒11697; c) S. Gao, G. Wei, S.
Zhang, B. Zheng, J. Xu, G. Chen, M. Li, S. Song, W. Fu, Z.
Xiao, W. Lu, Nat. Commun. 2019, 10, 2206.
14-10-147), and the Canadian Foundation for Innovation (J.B.G.:
JELF, 33977).
Keywords: Boron formazanates • near-infrared dyes • charge
transfer
•
cyclic voltammetry
•
range-separated hybrid
functionals
References
[
[
9]
a) G. Hong, A. L. Antaris, H. Dai, Nat. Biomed. Eng. 2017, 1,
[
1]
a) Y. Li, J.-D. Lin, X. Che, Y. Qu, F. Liu, L.-S. Liao, S. R.
Forrest, J. Am. Chem. Soc. 2017, 139, 17114–17119; b) T. Li,
T. Meyer, Z. Ma, J. Benduhn, C. Körner, O. Zeika, K.
Vandewal, K. Leo, J. Am. Chem. Soc. 2017, 139, 13636–
0010; b) J. Li, K. Pu, Chem. Soc. Rev. 2019, 48, 38–71.
10] a) J. Zou, P. Wang, Y. Wang, G. Liu, Y. Zhang, Q. Zhang, J.
Shao, W. L. Si, W. Huang, X. Dong, Chem. Sci. 2019, 10,
2
68‒276; b) L. Teng, G. Song, Y. Liu, X. Han, Z. Li, Y. Wang,
S. Huan, X. B. Zhang, W. Tan, J. Am. Chem. Soc. 2019, 141,
3572‒13581.
11] W. Sun, S. Guo, C. Hu, J. Fan, X. Peng, Chem. Rev. 2016,
16, 7768‒7817.
12] a) C. Yu, L. Jiao, T. Li, Q. Wu, W. Miao, J. Wang, Y. Wei, X.
Mu, E. Hao, Chem. Commun. 2015, 51, 16852–16855; b) K.
Sezukuri, M. Suzuki, H. Hayashi, D. Kuzuhara, N. Aratani, H.
Yamada, Chem. Commun. 2016, 52, 4872–4875; c) Y. Jiang,
X. Zheng, Y. Deng, H. Tian, J. Ding, Z. Xie, Y. Geng, F. Wang,
Angew. Chem. Int. Ed. 2018, 57, 10283‒10287; d) N. Ando,
H. Soutome, S. Yamaguchi, Chem. Sci. 2019, 10, 7816‒7821;
e) L. Wang, W. Du, Z. Hu, K. Uvdal, L. Li, W. Huang, Angew.
Chem. Int. Ed. 2019, 58, 14026‒14043.
13639; c) S.-W. Baek, S. Jun, B. Kim, A. H. Proppe, O.
Ouellette, O. Voznyy, C. Kim, J. Kim, G. Walters, J. H. Song,
S. Jeong, H. R. Byun, M. S. Jeong, S. Hoogland, F. P. García
de Arquer, S. O. Kelley, J.-Y. Lee, E. H. Sargent, Nat. Energy
1
[
[
1
2019, 4, 969−976; d) X. Zhao, C. Yao, T. Liu, J. C. Hamill, Jr.,
G. O. Ngongang Ndjawa, G. Cheng, N. Yao, H. Meng, Y.-L.
Loo, Adv. Mater. 2019, 31, e1904494; e) W. Song, B. Fanady,
R. Peng, L. Hong, L. Wu, W. Zhang, T. Yan, T. Wu, S. Chen,
Z. Ge, Adv. Energy Mater. 2020, 10, 2000136.
a) H. Hyun, E. A. Owens, H. Wada, A. Levitz, G. Park, M. H.
Park, J. V. Frangioni, M. Henary, H. S. Choi, Angew. Chem.
Int. Ed. 2015, 54, 8648‒8652; b) Y. Li, Y. Sun, J. Li, Q. Su, W.
Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, F. Li, J. Am. Chem.
Soc. 2015, 137, 6407‒6416; c) C. E. Hoogstins, Q. R. J. G.
Tummers, K. N. Gaarenstroom, C. D. de Kroon, J. B. Trimbos,
T. Bosse, V. T. H. B. M. Smit, J. Vuyk, C. J. H. van de Velde,
A. F. Cohen, P. S. Low, J. Burggraaf, A. L. Vahrmeijer, Clin.
Cancer. Res. 2016, 22, 2929–2938; d) E. D. Cosco, J. R.
[
2]
[
13] a) J. Jiang, Z. Xu, J. Zhou, M. Hanif, Q. Jiang, D. Hu, R. Zhao,
C. Wang, L. Liu, D. Ma, Y. Ma, Y. Cao, Chem. Mater. 2019,
31, 6499–6505; b) S. Liu, X. Zhou, H. Zhang, H. Ou, J. W. Y.
Lam, Y. Liu, L. Shi, D. Ding, B. Z. Tang, J. Am. Chem. Soc.
6
This article is protected by copyright. All rights reserved.