Journal of the American Chemical Society
Article
encapsulation of strongly hydrophilic, multicharged anions, as a
consequence of the presence of stabilizing hydrogen-bond
donor groups decorating the internal cavities of the cages.
REFERENCES
■
(
1) Recent reviews on self-assembled containers: (a) Chakrabarty, R.;
Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810. (b) Laughrey,
Z.; Gibb, B. C. Chem. Soc. Rev. 2011, 40, 363. (c) Avram, L.; Cohen,
Y.; Rebek, J. Chem. Commun. 2011, 47, 5368. (d) Breiner, B.; Clegg, J.
K.; Nitschke, J. R. Chem. Sci. 2011, 2, 51. (e) Pluth, M. D.; Bergman,
R. G.; Raymond, K. N. Acc. Chem. Res. 2009, 42, 1650. (f) Michito, Y.;
Klosterman, J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418.
g) Rebek, J. Acc. Chem. Res. 2009, 42, 1660. (h) Ward, M. D. Chem.
Commun. 2009, 4487.
2) (a) Hastings, C. J.; Backlund, M. P.; Bergman, R. G.; Raymond,
K. N. Angew. Chem., Int. Ed. 2011, 50, 10570. (b) Hastings, C. J.;
Backlund, M. P.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc.
010, 132, 6938. (c) Bao, X.; Rieth, S.; Stojanovic, S.; Hadad, C. M.;
Badjic, J. D. Angew. Chem., Int. Ed. 2010, 49, 4816. (d) Crisostomo, F.
R. P.; Lledo, A.; Shenoy, S. R.; Iwasawa, T.; Rebek, J. J. Am. Chem. Soc.
2009, 131, 7402. (e) Iwasawa, T.; Hooley, R. J.; Rebek, J. Science 2007,
17, 493. (f) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science
2007, 316, 85. (g) Yoshizawa, M.; Tamura, M.; Fujita, M. Science 2006,
n−
Tetrahedral EO4 oxoanions (n = 2, 3) have been found to act
as templates for the cage self-assembly. In the absence of such
templates, no M4L6 cages could be observed, and other
coordination assemblies formed in solution.
Despite their lack of preorganization, the M4L6 cage
receptors studied here display remarkable affinities and
(
n−
selectivities for tetrahedral EO4 oxoanions in aqueous
(
environments. Though the exact anion binding constants
could not be measured due to the instability of the “empty”
6
−1
cages, we estimated a lower limit of (6 ± 1) × 10 M for the
2
association constant corresponding to sulfate binding by the
8+
6+
Ni (L1)6 cage receptor. In the case of [Zn (tBuL1) (EO )]
4
4
6
4
cages, the relative anion encapsulation selectivity could be
77
3
assessed from anion exchange experiments monitored by Se
7
7
2−
NMR spectroscopy, using SeO4 as an NMR-active anionic
3−
312, 251.
probe. The following anion selectivity trend was found: PO
4
≫
CrO42 > SO4 > SeO4 > MoO4 > WO4 . The
−
2−
2−
2−
2−
(3) (a) Ferrand, Y.; Crump, M. P.; Davis, A. P. Science 2007, 318,
19. (b) Rehm, T. H.; Schmuck, C. Chem. Soc. Rev. 2010, 39, 3597.
6
observed trend mostly parallels the decrease in anions’ charge
densities, which corresponds to an anti-Hofmeister selectivity.
Such a behavior is consistent with the presence of a more
stabilizing environment for the anions inside the urea-
functionalized cages relative to the external aqueous solution.
Another factor contributing to the observed selectivity is the
structural flexibility of the cages, which can distort their frames
to accommodate different-sized anions and optimize their
binding by the urea groups. These results suggest that with
improved preorganization and structural rigidity, even stronger
anion binding and more prominent selectivities may be
achievable with this class of cage receptors, potentially leading
to applications related to separation of environmentally relevant
(
4) (a) Saalfrank, R. W.; Stark, A.; Peters, K.; von Schnering, H. G.
Angew. Chem., Int. Ed. 1988, 27, 851. (b) Saalfrank, R. W.; Maid, H.;
Scheurer, A. Angew. Chem., Int. Ed. 2008, 47, 8794.
(5) (a) Caulder, D. L.; Powers, R. E.; Parac, T. N.; Raymond, K. N.
Angew. Chem., Int. Ed. 1998, 37, 1840. (b) Caulder, D. L.; Raymond, K.
N. Acc. Chem. Res. 1999, 32, 975. (c) Davis, A. V.; Fiedler, D.; Ziegler,
M.; Terpin, A.; Raymond, K. N. J. Am. Chem. Soc. 2007, 129, 15354.
(
6) (a) Fleming, J. S.; Mann, K. L. V.; Carraz, C.-A.; Psillakis, E.;
Jeffery, J. C.; McCleverty, J. A.; Ward, M. D. Angew. Chem., Int. Ed.
998, 37, 1279. (b) Paul, R. L.; Bell, Z. R.; Jeffery, J. C.; McCleverty, J.
1
A.; Ward, M. D. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4883. (c) Paul,
R. L.; Argent, S. P.; Jeffery, J. C.; Harding, L. P.; Lynam, J. M.; Ward,
M. D. Dalton Trans. 2004, 3453. (d) Tidmarsh, I. S.; Taylor, B. F.;
Hardie, M. J.; Russo, L.; Clegg, W.; Ward, M. D. New J. Chem. 2009,
33, 366. (e) Hall, B. R.; Manck, L. E.; Tidmarsh, I. S.; Stephenson, A.;
Taylor, B. F.; Blaikie, E. J.; Vander Griend, D. A.; Ward, M. D. Dalton
Trans. 2011, 40, 12132.
36
anions (e.g., sulfate separation from nuclear waste).
ASSOCIATED CONTENT
■
(
7) (a) Glasson, C. R. K.; Meehan, G. V.; Clegg, J. K.; Lindoy, L. F.;
*
S
Supporting Information
Turner, P.; Duriska, M. B.; Willis, R. Chem. Commun. 2008, 1190.
(b) Glasson, C. R. K.; Clegg, J. K.; McMurtrie, J. C.; Meehan, G. V.;
Lindoy, L. F.; Motti, C. A.; Moubaraki, B.; Murray, K. S.; Cashion, J.
D. Chem. Sci. 2011, 2, 540.
1
Detailed experimental and synthetic procedures; NMR ( H,
1
3
77
C, Se), DOSY, UV−vis, and ESI-MS spectra; energies and
coordinates of DFT-optimized structures; details of the MD
simulations; and X-ray crystallographic data including CIF files.
(
8) (a) Mal, P.; Schultz, D.; Beyeh, K.; Rissanen, K.; Nitschke, J. R.
Angew. Chem., Int. Ed. 2008, 47, 8297. (b) Meng, W.; Clegg, J. K.;
Thoburn, J. D.; Nitschke, J. R. J. Am. Chem. Soc. 2011, 133, 13652.
(c) Hristova, Y. R.; Smulders, M. M. J.; Clegg, J. K.; Breiner, B.;
Nitschke, J. R. Chem. Sci. 2011, 2, 638.
(
9) Parac, T. N.; Caulder, D. L.; Raymond, K. N. J. Am. Chem. Soc.
AUTHOR INFORMATION
1998, 120, 8003.
(10) Custelcean, R. Top. Curr. Chem. 2012, 322, 193.
(11) Recent reviews on anion receptors: (a) Wenzel, M.; Hiscock, J.
R.; Gale, P. A. Chem. Soc. Rev. 2012, 41, 480. (b) Gale, P. A. Chem.
Commun. 2011, 47, 82. (c) Gale, P. A. Chem. Soc. Rev. 2010, 39, 3746.
(12) Recent reviews on metal-based self-assembled anion receptors:
a) Mercer, D. J.; Loeb, S. J. Chem. Soc. Rev. 2010, 39, 3612.
b) Amendola, V.; Fabbrizzi, L. Chem. Commun. 2009, 513. (c) Steed,
Notes
The authors declare no competing financial interest.
(
(
ACKNOWLEDGMENTS
■
J. W. Chem. Soc. Rev. 2009, 38, 506.
(13) Kubik, S. Chem. Soc. Rev. 2010, 39, 3648.
This research was sponsored by the Division of Chemical
(14) (a) Custelcean, R. Curr. Opin. Solid State Mater. Sci. 2009, 13,
Sciences, Geosciences, and Biosciences, Office of Basic Energy
Sciences, U.S. Department of Energy. The synthesis of 77Se-
68. (b) Custelcean, R.; Moyer, B. A. Eur. J. Inorg. Chem. 2007, 1321.
15) Recent reviews on cage receptors for anions: (a) Kang, S. O.;
Llinares, J. M.; Day, V. W.; Bowman-James, K. Chem. Soc. Rev. 2010,
9, 3980−4003. (b) Ballester, P. Chem. Soc. Rev. 2010, 39, 3810.
16) (a) Rajbanshi, A.; Moyer, B. A.; Custelcean, R. Cryst. Growth.
(
labeled materials, and NMR experiments involving cage
formation and anion exchange were conducted at the Center
for Nanophase Materials Sciences, which is sponsored at Oak
Ridge National Laboratory by the Scientific User Facilities
Division, Office of Basic Energy Sciences, U.S. Department of
Energy.
3
(
Des. 2011, 11, 2702. (b) Custelcean, R.; Bock, A.; Moyer, B. A. J. Am.
Chem. Soc. 2010, 132, 7177. (c) Custelcean, R.; Remy, P. Cryst.
Growth. Des. 2009, 9, 1985.
8
533
dx.doi.org/10.1021/ja300677w | J. Am. Chem. Soc. 2012, 134, 8525−8534