ORGANIC
LETTERS
2
002
Vol. 4, No. 2
13-216
Synthesis of Novel Macrocyclic
Lanthanide Chelates Derived from
Bis-pyrazolylpyridine
2
Ernesto Brunet,* Olga Juanes, Rosa Sedano, and Juan-Carlos Rodr ´ı guez-Ubis*
Departamento de Qu ´ı mica Org a´ nica, C-1, Facultad de Ciencias,
niVersidad Aut o´ noma de Madrid, 28049-Madrid, Spain
Received October 24, 2001
ABSTRACT
New macrocyclic chelates based on bis-pyrazolylpyridine and diethylenetriaminepentaacetic acid are synthesized, and the remarkable
luminescence properties of their lanthanide chelates are reported.
The metal-centered emission of lanthanide chelates has been
successfully applied in various analytical methods based on
ments is not an easy task, and research in this area is very
active.
3
1
2
time-resolved fluorescence (TRF) and fluoroinmmunoassay.
The design of the organic part of the chelate is paramount
in attaining the required conditions for these chelates to be
practical. A useful ligand should bear a good yield for
intersystem crossing, a reasonable matching between the
chromophore first triplet state and the resonance level of the
metal, and the closest possible metal-to-chromophore dis-
tance. Last but not least, the ligand should be reasonably
soluble in aqueous media but must effectively shield the
metal from the water OH oscillators that easily quench
lanthanide emission. The fulfillment of all these require-
Heteroaromatic rings such as pyridine, pyrazine, or pyra-
zole have revealed excellent building blocks for designing
photoactive probes, and we have already prepared a number
4
of useful chelates based on these motifs. On the other hand,
polycarboxylate units are widely used in lanthanide chelates
because of their high binding constants for lanthanides.5
(3) Saito, S.; Hoshino, H.; Yotsuyanagi, T. Bull. Chem. Soc. Jpn. 2000,
3, 1817. Yang, X. P.; Su, C. Y.; Kang, B. S.; Feng, X. L.; Xiao, W. L.;
7
Liu, H. Q. J. Chem. Soc., Dalton Trans. 2000, 3253. Nozary, H.; Piguet,
C.; Rivera, J. P.; Tissot, P.; Bernardinelli, G.; Vulliermet, N.; Weber, J.;
Bunzli, J. C. G. Inorg. Chem. 2000, 39, 5286. FatinRouge, N.; Toth, E.;
Perret, D.; Backer, R. H.; Merbach, A. E.; Bunzli, J. C. G. J. Am. Chem.
Soc. 2000, 122, 10810. Cooper, M. E.; Sammes, P. G. J. Chem. Soc., Perkin
Trans. 2 2000, 1695. Magennis, S. W.; Parsons, S.; Corval, A.; Woollins,
J. D.; Pikramenou, Z. Chem. Commun. 1999, 61. Prodi, L.; Pivari, S.;
Bolletta, F.; Hissler, M.; Ziessel, R. Eur. J. Inorg. Chem. 1998, 12, 1959.
(4) Rodr ´ı guez-Ubis, J. C.; Sedano, R.; Barroso, G.; Juanes, O.; Brunet,
E. HelV. Chim. Acta 1997, 80, 86. Takalo, H.; Mukkala, V. M.; Merio, L.;
Rodriguez-Ubis, J. C.; Sedano, R.; Juanes, O.; Brunet, E. HelV. Chim. Acta
1997, 80, 372.
(
1) Harma, H.; Aronkyto, P.; Lovgren, T. Anal. Chim. Acta 2000, 410,
8
6
1
5. van Hoek, A.; Visser, A. J. W. G. Phys. Chem. Biol. Interfaces 2000,
51. Bacigalupo, M. A.; Ius, A.; Longhi, R.; Meroni, G. Analyst 2000, 125,
847. Kessler, M. A. Anal. Chem. 1999, 71, 1540. Yuan, J. L.; Matsumoto,
K.Kimura, H. Anal. Chem. 1998, 70, 596. Hemmila, I.; Mukkala, V. M.;
Takalo, H. J. Alloys Compd. 1997, 249, 158.
(2) Werts, M. H. V.; Woudenberg, R. H.; Emmerink, P. G.; vanGassel,
R.; Hofstraat, J. W.; Verhoeven, J. W. Angew. Chem., Int. Ed. 2000, 39,
(5) Chen, J. Y.; Selvin, P. R. J. Photochem. Photobiol. A - Chem. 2000,
135, 27. Martell, A. E.; Smith, R. M. Critical stability constants; Plenum
Press: New York, 1989.
4
542. Beltyukova, S. V.; Egorova, A. V.; Teslyuk, O. I. J. Anal. Chem.
000, 55, 682.
2
1
0.1021/ol0169527 CCC: $22.00 © 2002 American Chemical Society
Published on Web 12/22/2001