Suresh et al.
JOCArticle
response of the fluorescence output signal as a consequence
of the formation of a host-guest inclusion complex.
external stimulation. Achieving such molecular motion with
an ionic input could lead to the design of a supramolecular
assembly that is capable of mimicking the function of biological
8a
However, neither change in conformation nor any molecular
movement was reported as a result of such inclusion complex
formation. To demonstrate how RET can further be used to
probe the folding-unfolding movement in a definite self-
assembled system, we have synthesized a new crown ether
derivative (1) substituted with naphthalene (nap) and cou-
marin (cou) functionality as the donor and acceptor compo-
nent, respectively (Scheme 1), as these are known to form a
6
motors at the molecular level. Recently Rebek et al. have
shown that intermolecular resonance energy transfer (RET)
between pyrene and perylene moieties occurs when mono-
functionalized pyragallol or resorcinol arene moieties form
self-assembled hexameric capsule-like architecture. It is
shown that formation of such self-assembled structures is a
random process and one out of many conformers, and
7
8
b
assemblies could show the RET process. In our attempt to
RET pair and allow us to study any conformational change
of the crown moiety on forming the inclusion complex.
We have used imidazolium (1-butyl-3-methylimidazolium
develop such a system where the RET process can be
achieved with more control and as a result of some ionic
input, we have designed a simple bisbenzocrown derivative,
as this class of compounds is known to adopt different
conformations in the presence and absence of the guest
molecule. To the best of our knowledge there is only one
reference available in the literature that describes the RET
þ þ
[C mim] ) and 1-decyl-3-methylimidazolium ([C mim] ))
4 10
9
(
ions, as these are known to form a [2]pseudorotaxane type of
2f
inclusion complex with bisbenzo crown ether derivatives.
In this paper, we have described how the formation of a
þ
simple [2]pseudorotaxane adduct, between 1 and [C mim]
4
þ
or [C mim] , could induce conformational change of the
0
1
(
1) (a) Ashton, P. R.; Philp, D.; Spencer, N.; Stoddart, J. F. J. Chem. Soc.,
crown ether based host fragment and RET process opera-
tional between nap and cum fragments. Ratiometric changes
in the fluorescence readout signal as a consequence of the
RET process enabled us to read the conformational changes
or the molecular movements. Such an example is rare in the
literature.
Chem. Commun. 1991, 1677–167. (b) Fyfe, M. C. T.; Glink, P. T.; Menzer, S.;
Stoddart, J. F.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. Engl.
1997, 36, 2068–2070. (c) Ashton, P. R.; Langford, J.; Spencer, S. N.;
Stoddart, J. F.; White, A. J. P.; Williams, D. J. Chem. Commun. 1996,
1
1
387–1388. (d) Mirzoian, A.; Kaifer, A. E. Chem.;Eur. J. 1997, 3, 1052–
058. (e) Baxter, P. N. W.; Lehn, J.- M.; Sleiman, H.; Rissanen, K. Angew.
Chem., Int. Ed. Engl. 1997, 36, 1294–1296.
2) (a) Cordova, R. A.; Kaifer, A. E.; Stoddart, J. F. Nature (London)
994, 369, 133–137. (b) Solladie, N.; Chambron, J.-C.; Dietrich-Buchecker,
C. O.; Sauvage, J.-P. Angew. Chem., Int. Ed. Engl. 1996, 35, 906–909.
c) Vogtle, F.; Dunnwald, T.; Handel, M.; Jager, R.; Meier, S.; Harder, G.
(
1
Results and Discussion
(
Chem.;Eur. J. 1996, 2, 640–643. (d) Leigh, D. A.; Murphy, A.; Smart, J. P.;
Slawin, A. M. Z. Angew. Chem., Int. Ed. Engl. 1997, 36, 728–732. (e) Jiang,
W.; Winkler, H. D. F.; Schalley, C. A. J. Am. Chem. Soc. 2008, 130, 13852–
A database search on the structural aspects of various
derivatives of dibenzo[24]crown-8 reveals both open and
folded conformations. In order to establish the actual con-
1
3853. (f) Li, L.; Clarkson, G. J. Org. Lett. 2007, 9, 497–500.
3) (a) Schill, G.Catenanes, Rotaxanes, Knots; Academic Press: New York,
971. (b) Nierengarten, J.-F.; Dietrich-Buchecker, C. O.; Sauvage, J.-P.
(
1
formation for the 1, its H NMR spectra was compared with
1
J. Am. Chem. Soc. 1994, 116, 375–376. (c) Armaroli, N.; Balzani, V.;
Barigelletti, F.; De Cola, L.; Flamigni, L.; Sauvage, J.-P.; Hemmert, C.
J. Am. Chem. Soc. 1994, 116, 5211–5217. (d) Amabilino, D. B.; Dietrich-
Buchecker, C. O.; Livoreil, A.; Perez-Garcia, L.; Sauvage, J.-P.; Stoddart,
J. F. J. Am. Chem. Soc. 1996, 118, 3905–3913. (e) Peinador, C.; Blanco, V.;
Quintela, J. M. J. Am. Chem. Soc. 2009, 131, 920–921.
that of 2,3-dihydroxy naphthalene (N), 6,7-dihydroxy cou-
marin (C), and a physical equimolar mixture of N and C of
comparable concentrations clearly revealed an upfield shift
for H atom (6.20-6.18), H (7.65-7.55 ppm), and H , H
3
4
5
8
(
6.9-6.8 ppm) of coumarin moiety (Supporting Information).
(4) (a) Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi, M.
Acc. Chem. Res. 2001, 34, 445–455. and references therein. (b) Hernandez,
J. V.; kay, E. R.; Leigh, D. A. Science 2004, 306, 1532. (c) Chatterjee, M. N.;
Kay, E. R.; Leigh, D. A. J. Am. Chem. Soc. 2006, 128, 4058–4073. (d) Serreli,
V.; Lee, C.-F.; Kay, E. R.; Leigh, D. A. Nature 2007, 445, 523–527.
These upfield shifts owing to the shielding effect for the part
of the naphthalene moiety support a proximate distance
between coumarin and naphthalene moiety in 1 and thus
confirm the folded conformation. 2D-NOESY spectrum was
also recorded, which revealed the NOE effect between two
chromophores (Supporting Information). The observed
cross peaks for H /H at δ = 7.3 ppm and for H /H
at δ = 7.1 ppm confirm the NOE effect between nearby
H-atoms of two different aromatic moieties and thus the
folded conformation.
(
e) Sauvage, J. P. Acc. Chem. Res. 1998, 31, 611–619. (f) Raymo, F. M.;
Stoddart, J. F. Chem. Rev. 1999, 99, 1643–1963. (g) Onagi, H.; Rebek, J., Jr.
Chem. Commun. 2005, 4604–4606.
(5) (a) Cantrill, S. J.; Pease, A. R.; Stoddart, J. F. J. Chem. Soc., Dalton
Trans. 2000, 3715–3734. (b) Rebek, J.; Nemeth, D. J. Am. Chem. Soc. 1986,
4
a,f
4
c,d
108, 5637–5638. (c) Burley, S. K.; Petsko, G. A. J. Am. Chem. Soc. 1986, 108,
7995–8001. (d) Hamilton, A. D.; Engen, D. V. J. Am. Chem. Soc. 1987, 109,
5035–5036. (e) Zimmerman, S. C.; Vanzyl, C. M. J. Am. Chem. Soc. 1987,
109, 7894–7896. (f) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G.
Science 1997, 277, 1793–1796. (g) Hunter, C. A. Angew. Chem., Int. Ed. Engl.
993, 32, 1584–1586. (h) Hunter, C. A. Chem. Soc. Rev. 1994, 23, 101. (i)
Ferguson, S. B.; Diederich, F. Angew. Chem., Int. Ed. Engl. 1986, 25, 1127–
129. (j) Nishio, M.; Hirota, M. Tetrahedron 1989, 45, 7201. (k) Kotera, M.;
Lehn, J.-M.; Vigneron, J.-P. J. Chem. Soc., Chem. Commun. 1994, 197–199.
l) Sijbesma, R. P.; Meijer, E. W. Curr. Opin. Colloid Interface Sci. 1999, 4,
4–32. (m) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford
Any possibility of intermolecular interaction as a probable
reason for these upfield shifts was ignored; as no further shift
1
1
1
was observed when H NMR and 2D-NOESY spectra for 1
(
2
were recorded using an even higher concentration of 1.
þ
þ
Complexation Studies of Host 1 with [C mim] /[C mim] .
10
4
University Press: New York, 1997. (n) Ben-Naim, A. Hydrophobic Interac-
tions; Plenum Press: New York & London, 1980. (o) Bhasikuttan, A. C.;
Mohanty, J.; Nau, W. M.; Pal, H. Angew. Chem., Int. Ed. Engl. 2007, 46, 4120–
In order to examine the possibility of formation of the
interwoven complex between 1 and imidazolium ion, we
4
9
122. (p) Street, A. G.; Mayo, S. L. Proc. Natl. Acad. Sci. U.S.A. 1999, 96,
074–9076. (q) Ohta, K.; Ikejima, M.; Moriya, M.; Hasebe, H.; Yamamoto, I.
1
recorded H NMR spectra for 1 in the absence and presence
þ
of varying concentration of [C mim] in CD Cl (Figure 1).
2
J. Mater. Chem. 1998, 8, 1971–1977.
6) (a) Fletcher, S. P.; Dumur, F.; Pollard, M. M.; Feringa, B. L. Science
005, 310, 80–82. (b) Badjic, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart,
4
2
(
A downfield shift of H proton from δ=8.47 ppm to δ=
I
2
8
.54 ppm indicates [C-H
3 3 3 O] interaction of the acidic H
I
J. F. Science 2004, 303, 1845. (c) Ballardini, R.; Balzani, V.; Clemente Leon,
M.; Credi, A.; Gandolfi, M. T.; Ishlow, E.; Perkins, J.; Stoddart, J. F.; Tseng,
H.-R.; Wenger, S. J. Am. Chem. Soc. 2002, 124, 12786–12795.
(8) (a) Ishow, E.; Credi, A.; Balzani, V.; Spadola, F.; Mandolini, L.
(7) (a) Barrett, E.; Dale, T. J.; Rebek, J., Jr. J. Am. Chem. Soc. 2008, 130,
344–2350. (b) Barrett, E. S.; Dale, T. J.; Rebek, J., Jr. Chem. Commun. 2007,
224–4226.
Chem.;Eur. J. 1999, 5, 984–989. (b) Lee, M. H.; Quang, D. T.; Jung, H. S.;
Yoon, J.; Lee, C.-H.; Kim, J. S. J. Org. Chem. 2007, 72, 4242–4245.
(9) Park, S.; Kazlauskas, R. J. J. Org. Chem. 2001, 66, 8395–8401.
2
4
J. Org. Chem. Vol. 76, No. 1, 2011 139