304 J. Phys. Chem. B, Vol. 107, No. 1, 2003
Spange et al.
The main problem arisis from the choice of suitable nucleo-
philes to study kinetics of heterogeneous reactions, because
seldom a clean kinetic plot is observed because interfering
reactions occur.
Acknowledgment. Financial support in particular for this
project by the Deutsche Forschungsgemeinschaft and the Fonds
der Chemischen Industrie is gratefully acknowledged. We thank
Condea GmbH, Merck AG Darmstadt, and Degussa for the
samples of the solid acid catalysts. Mrs. Berger and Prof. D.
Hoenicke, Department of Technical Chemistry, University of
Technology, Chemnitz, performed the BET measurements.
Figure 5. Calculated versus measured log k′ values according to eq 4
for the influence of three independent parameters (pK of HX, the
s
Kamlet-Taft acidity R of the solid acid catalyst, and the nucleophilicity
parameter N of the educt [N]) on the reaction of (C H ) CX with N
6 5 3
References and Notes
catalyzed by a solid acid.
(1) Corma, A. Chem. ReV. 1995, 95, 559-614.
(
2) Olah, G. A. In Acidity and Basicity of Solids, Theory, Assesment
and Utility; Fraissard, J., Petrakis, L., Eds.; Nato ASI Series, Vol. 444;
Kluwer Academic: Dortrecht, Netherlands, 1994; pp 305-334.
coefficient; sd ) standard deviation; F ) significance).
log k′[(C H ) CX/SA + N] ) -8.785 + 1.499R (of SA) -
(
3) Corma, A. Curr. Opin. Solid State Mater. Sci. 1997, 2, 63-75.
(4) Maciel, G. E.; Bronnimann, C. E.; Zeigler, R. S.; Ssuer Chuang,
J.; Kinney, D. R.; Keiter, E. A. The Colloid Chemistry of silica; American
Chemical Society: Washington, DC. 1994; pp 260-282.
6
5 3
-
0
.075pK (of X ) + 0.466N (4)
s
(5) Heeribout, L.; Semmer, V.; Batamack, P.; Dor e` mieux-Morin, C.;
n ) 13; r ) 0.986; sd ) 0.236; F < 0.0001
Vincent, R.; Fraissard, J. Stud. Surf. Sci. Catal. 1996, 101, 831-840.
6) Chronister, C.; Drago, R. S. J. Am. Chem. Soc. 1993, 115, 4793-
798.
(
4
1
3
Despite the restricted data set of n ) 13, the excellent quality
and significance of the correlation eq 4 is a promising result,
which shows that LFE relationships are a suitable tool for
quantification of surface-mediated polar organic reactions.
Equation 4 also demonstrates the importance of the acid-base
interaction of the solid acid catalyst with the substrate for
generating the carbenium intermediate. Therefore, for a fixed
carbenium precursor, the choice of the solid acid catalyst is of
great importance. It seems that for a given pair of reactants for
which E and N are known from model investigations from
solution, the rate of the heterogeneously catalyzed reaction is
solely dependent on both the basicity of the precursor and the
acidity of the solid acid catalyst, which are important for the
(7) Drago, R. S.; Dias, J. A.; Maier, T. O. J. Am. Chem. Soc. 1997,
19, 7702-7710.
(8) Drago, R. S.; Petrosius, S. C.; Chronister, C. W. Inorg. Chem. 1994,
3, 367-372.
(9) Xu, T.; Kob, N.; Drago, R. S.; Nicholas, J. B.; Haw, J. F. J. Am.
Chem. Soc. 1997, 119, 12231-12239.
(10) Haw, J. B.; Nicholas, J. B.; Xu, T.; Beck, L. W.; Ferguson, D. B.
Acc. Chem. Res. 1996, 29, 259-267.
(11) Drago, R. S.; Dias, S. C.; Torrealbe, M.; de Lima, I. J. Am. Chem.
Soc. 1997, 119, 4444-4452.
(12) Umanski, P.; Engelhardt, J.; Hall, W. K. J. Catal. 1991, 127, 128-
140.
(
13) Fargasiu, D.; Ghenciu, A.; Li, J. Q. J. Catal. 1996, 158, 116-127.
(
14) Lee, C.; Parrillo, D. J.; Gorte, R. J.; Farneth, W. E. J. Am. Chem.
Soc. 1996, 118, 3262-3268.
(15) (a) Barich, D. H.; Nicholas, J. B.; Xu, T.; Haw, J. F. J. Am. Chem.
Soc. 1998, 120, 12342-12350. (b) Xu, T.; Haw, F. J. Am. Chem. Soc. 1994,
+
effective surface concentration of R . That would mean that
1
16, 10188-10195.
the rate constant of the elementary step k2 is hardly affected by
the nature of the solid acid catalyst. However, this presumption
seems only valid for heterogeneous catalysts in which the active
sites are easily accessible or are located on the external surface
of the solid acid. This problem will be studied by our group in
future.
(
16) (a) Weitz, E. Chem. Ber. 1939, 72, 1740. (b) Weitz, E.; Schmidt,
S. Chem. Ber. 1939, 72, 2099.
(17) Leftin, H. P. In Carbonium Ions; Olah, G. A., Schleyer, P. R., Eds.;
John Wiley & Sons: New York, 1968; Vol. 1, p 363.
(
18) Arai, H.; Saito, Y.; Yoneda, Y. Bull. Chem. Soc. Jpn. 1967, 40,
12.
(19) Karge, H. G. Surf. Sci. 1971, 27, 419.
20) (a) Spange, S.; Fandrei, D.; Simon, F.; Jacobasch, H. J. Colloid
3
(
Polym. Sci. 1994, 272, 99-107. (b) Eismann, U.; Spange, S. Macromol-
ecules 1997, 30, 3439-3446. (c) Spange, S.; Eismann, U.; H o¨ hne, S.;
Langhammer, E. Macromol. Symp. 1997, 126, 223-236.
Conclusion
The apparent rate constant of a polar reaction catalyzed by a
moderately strong solid acid is strongly dependent on the nature
of the carbenium (R ) precursor R-X, the acid strength of the
solid, and the nucleophilicity of the olefinic educt. The solid
acid can be similarly treated like a Lewis acid, which has been
used as catalyst for polar reactions in solution. The apparent
rate constant of a polar reaction is also significantly dependent
(21) (a) Spange, S.; Schmiede, B.; Walther, R.; GIT Fachz. Lab. 1992,
7
, 736-337. (b) Spange, S.; Walther, R.; Org. React. (Tartu) 1995, 29,
+
45-48.
(22) Spange, S. Prog. Polym. Sci. 2000, 25, 781-849.
23) Adolph, S.; Spange, S.; Zimmermann, Y. J. Phys. Chem. B 2000,
(
1
04, 6429-6438.
(24) Cano, M. L.; Corma, A.; Fornes, V.; Garcia, H.; Miranda, M. A.;
Baerlocher, C.; Lengauer, C.; J. Am. Chem. Soc. 1996, 118, 11006-11013.
(25) Cano, M. L.; Cozens, F. L.; Garcia, H.; Marti, V.; Scalano, J. C. J.
Phys. Chem. 1996, 100, 18152-18157.
-
on the basicity of the leaving anionic group X . Thus, for each
+
precursor R-X dependent on both the nature of R and the
(
26) Corma, A.; Garcia, H. J. Chem. Soc., Dalton Trans. 2000, 1381-
solid acid catalyst, the maximum rate constant as function of
1394.
-
(27) Tao, T.; Maciel, G. E. J. Am. Chem. Soc. 1995, 117, 12889-12890.
X can be changed.
(
28) Scaiano, J. C.; Garcia, H. Acc. Chem. Res. 1999, 32, 783-793.
The nucleophilicity of the educts determine the rate of the
reaction with constant selectivity independent of the solid acid
strength or basicity of the leaving anionic group X . Therefore,
the results in this paper demonstrate that Mayr’s E parameters
derived from solution may also be suitable to describe relative
reactivity of polar electrophilic reactions catalyzed by various
moderately strong solid acid catalysts. These parameters can in
turn be used to evaluate the catalytic activity of a special
catalysts for a specific polar reaction of interest.
(29) Neill, M. A.; Cozens, F. L.; Schepp, N. P. J. Am. Chem. Soc. 2000,
122, 6017-6027.
-
(30) Mayr, H. Rate Constants and Reactivity Ratios in Carbocationic
Polymerizations. Ionic Polymerization and Related Processes; Puskas, J.
E., Michel, A., Barghi, S., Eds.; Kluwer Academic Publishers: Dordrecht,
Netherlands, 1999; pp 99-115.
(31) (a) Mayr, H.; Angew. Chem. 1990, 102, 1415-1428; Angew. Chem.,
Int. Ed. Engl. 1990, 29, 1371-1384. (b) Mayr, H.; Patz, M. Angew. Chem.
1
994, 106, 990-1010; Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957.
(c) Schneider, R. Ph.D. Thesis, University Erlangen-N u¨ rnberg, Erlangen,
Germany, 1987.