COMMUNICATIONS
References
zole moiety, the resulting valence and conduction
band positions of the polymers can be strategically
aligned to bracket the redox potential of targeted in-
dividual reactions. The enhanced visible light-active
photocatalytic activity of the polymers was demon-
strated in the oxidative cyclization of N,N-dimethyl-
ACHTUNGTRENNUNGanilines with maleimides to yield tetrahydroquinoline
products, which are common structural motifs found
in numerous pharmacologically relevant compounds.
[1] a) S. Linic, P. Christopher, D. B. Ingram, Nat. Mater.
2011, 10, 911–921; b) P. Christopher, H. L. Xin, S. Linic,
Nat. Chem. 2011, 3, 467–472; c) N. S. Lewis, Science
2007, 315, 798–801.
[2] a) T. P. Yoon, M. A. Ischay, J. N. Du, Nat. Chem. 2010,
2, 527–532; b) X. J. Lang, X. D. Chen, J. C. Zhao,
Chem. Soc. Rev. 2014, 43, 473–486; c) D. M. Schultz,
T. P. Yoon, Science 2014, 343, 1239176.
[3] a) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc.
Rev. 2011, 40, 102–113; b) C. K. Prier, D. A. Rankic,
D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363;
c) C. H. Dai, J. M. R. Narayanam, C. R. J. Stephenson,
Nat. Chem. 2011, 3, 140–145.
Experimental Section
Polymer Synthesis
[4] a) X. Wang, K. Maeda, A. Thomas, K. Takanabe, G.
Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat.
Mater. 2009, 8, 76–80; b) M. Shalom, S. Inal, C. Fett-
kenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc.
2013, 135, 7118–7121; c) G. Zhang, M. Zhang, X. Ye, X.
Qiu, S. Lin, X. Wang, Adv. Mater. 2014, 26, 805–809;
d) Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem.
Int. Ed. 2015, 54, 12868–12884; e) J. S. Zhang, Y. Chen,
X. C. Wang, Energy Environ. Sci. 2015, 8, 3092–3108;
f) C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye, S. Lin,
M. Antonietti, X. Wang, Nat. Commun. 2015, 6, 7698;
g) M. Zhang, Z. Luo, M. Zhou, C. Huang, X. Wang,
Sci. China Mater. 2015, 58, 867–876.
[5] a) Y. H. Xu, S. B. Jin, H. Xu, A. Nagai, D. L. Jiang,
Chem. Soc. Rev. 2013, 42, 8012–8031; b) A. I. Cooper,
Adv. Mater. 2009, 21, 1291–1295.
[6] K. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti,
F. Vilela, Angew. Chem. 2013, 125, 1472–1476; Angew.
Chem. Int. Ed. 2013, 52, 1432–1436.
To a solution of 0.02 mmol (23 mg) of tetrakis(triphenyl-
phosphine)palladium(0), 0.02 mmol (4 mg) of CuI in 20 mL
of DMF and diisopropylamine (DIPA) (vol/vol 50/50),
0.67 mmol (100 mg) of 1,3,5-triethynylbenzene (TB), were
added 1 mmol (236 mg) of dibromobenzene (B) for P-BBT-
0; 0.9 mmol (212 mg) of B and 0.1 mmol (35.2 mg) of dibro-
mobenzo[1,2-c;4,5-c’]bis[1,2,5]thiadiazole (BBT) for P-BBT-
10; 0.5 mmol (118 mg) of B and 0.5 mmol (176 mg) of BBT
for P-BBT-50; 1 mmol (352 mg) of BBT for P-BB100. The
solution was degassed for 20 min with N2 and then was
heated to 80–908C depending on the feed ratios for 12 h.
The resulted polymers were then rinsed with Milli-Q water
several times and extracted with 50/50 dichloromethane and
methanol solution in a Soxhlet for 24 h. The insoluble solid
was then dried under vacuum overnight. Inductively coupled
plasma mass spectrometry (ICP-MS) analysis showed that
all three conjugated polymers have little or trace amount of
residual Pd (50 ppm) and Cu (30 ppm).
[7] Z. J. Wang, S. Ghasimi, K. Landfester, K. A. I. Zhang,
Photocatalytic Synthesis of 1,2,3,4-
Tetrahydroquinolines
Chem. Commun. 2014, 50, 8177–8180.
[8] B. C. Ma, S. Ghasimi, K. Landfester, F. Vilela, K. A. I.
Zhang, J. Mater. Chem. A 2015, 3, 16064–16071.
[9] J. Luo, Zhang, X. Zhang, J. ACS Catal. 2015, 2250–
2254.
[10] a) Z. J. Wang, S. Ghasimi, K. Landfester, K. A. I.
Zhang, Adv. Mater. 2015, 27, 6265–6270; b) Z. J. Wang,
K. Garth, S. Ghasimi, K. Landfester, K. A. I. Zhang,
ChemSusChem 2015, 8, 3459–3464.
In a typical procedure, N,N-dimethylaniline (0.5 mmol), mal-
eimide (0.25 mmol) and the polymer-based photocatalyst
(10 mg) were mixed in DMF (3 mL). The reaction mixture
was degassed and irradiated using a white LED lamp (1.2
W/cm2, Osa Optics) at room temperature for 24 h in air
unless otherwise noted. The product 1,2,3,4-tetrahydroqui-
noline was isolated and purified via silica chromatography.
For repeating experiments, P-BBT-10 was used as photoca-
talyst for the model reaction (entry 2, Table 1). After each
cycle, P-BBT-10 was isolated, washed with DMF and reused
for another cycle.
[11] Z. J. Wang, S. Ghasimi, K. Landfester, K. A. I. Zhang,
J. Mater. Chem. A 2014, 2, 18720–18724.
[12] S. Ghasimi, S. Prescher, Z. J. Wang, K. Landfester, J.
Yuan, K. A. I. Zhang, Angew. Chem. 2015, 127, 14757–
14761; Angew. Chem. Int. Ed. 2015, 54, 14549–14553.
[13] S. Dadashi-Silab, H. Bildirir, R. Dawson, A. Thomas,
Y. Yagci, Macromolecules 2014, 47, 4607–4614.
[14] R. S. Sprick, J.-X. Jiang, B. Bonillo, S. Ren, T. Ratvijit-
vech, P. Guiglion, M. A. Zwijnenburg, D. J. Adams,
A. I. Cooper, J. Am. Chem. Soc. 2015, 137, 3265–3270.
[15] J. D. Nguyen, E. M. D’Amato, J. M. R. Narayanam,
C. R. J. Stephenson, Nat. Chem. 2012, 4, 854–859.
[16] X. H. Gao, H. B. Bin Wu, L. X. Zheng, Y. J. Zhong, Y.
Hu, X. W. Lou, Angew. Chem. 2014, 126, 6027–6031;
Angew. Chem. Int. Ed. 2014, 53, 5917–5921.
Acknowledgements
The authors acknowledge the Max Planck Society for the fi-
nancial support. Z.J.W. is a recipient of a fellowship through
funding of the Excellence Initiative (DFG/GSC 266) of the
graduate school of excellence “MAINZ” (Materials Science
in Mainz).
[17] a) J. Zhang, G. Zhang, X. Chen, S. Lin, L. Mohlmann,
G. Dolega, G. Lipner, M. Antonietti, S. Blechert, X.
Wang, Angew. Chem. 2012, 124, 3237–3241; Angew.
Adv. Synth. Catal. 0000, 000, 0 – 0
6
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!