Our retrosynthetic analysis of anisatin is outlined in
Scheme 1. The key step in our plan involves a [3,3]-Claisen
key intermediate 6 in 65% yield, amounting to 42% total
yield over four steps.
At this junction, we moved into the second phase of
synthesis entailing the introduction of quaternary chiral center
C-7a (Scheme 3). To this end, 1,4-diene 5 was obtained via
Scheme 1
Scheme 3a
rearrangement to construct the C-7a quaternary center in 4.
We envisaged that a few manipulations would convert 4 into
ꢀ
-lactone 3, which was a key intermediate in Kende’s total
synthesis of (()-8-deoxyanisatin.
Our synthesis commences from the preparation of key
intermediate carboxyindanol 6 (Scheme 2). Michael addition
(
a) Na, NH
c) LDA, THF, -78 °C, then BnOCH
CH dCHOEt, reflux; (e) Ac O, Et N, DMAP, CH
LiHMDS, THF, -78 °C, then TMSCl, to 25 °C; (g) CH
NMe (5 equiv), xylene, reflux, 48 h.
3
, reflux, 1 h, then NH
4
Cl; (b) CH
Cl, to 0 °C; (d) Hg(OAc)
Cl , 0 °C; (f)
2
C(OMe) -
2 2 2
N , Et O, 0 °C;
(
2
2
,
2
2
3
2
2
Scheme 2a
3
2
Birch reduction7d,8 of 6, followed by esterification with
CH in 60% yield. It is suspected that cyclohexa-1,4-diene
will be susceptible to re-aromatization or isomerization
2 2
N
8
,9
5
to the corresponding 1,3-diene. To prevent these, attempts
were made to alkylate C-4 which nevertheless failed due to
10
the facile re-aromatization of 5 under basic conditions. For
this reason, our attention turned to implementation of the
(
a) p-TolMgBr, CuI (5 mol %), Et
C, 48 h; (c) NaBH , CeCl ‚7H O, MeOH, -78 °C, 2 h; (d) n-BuLi
4 equiv), TMEDA (4 equiv), hexane, reflux, 3 h, then CO , 0 °C,
overnight, then 1 M HCl, 0 °C.
2
O, 0 °C, 3 h; (b) PPA, 90
[
3,3]-Claisen rearrangement protocol to construct C-7a
°
(
4
3
2
3
,11
12
instead. A vinyl ether Claisen rearrangement was first
2
(
7) (a) Snieckus, V. Chem. ReV. 1990, 90, 879. (b) Panetta, C. A.; Dixit,
A. S. Synthesis 1981, 59. (c) Meyer, N.; Seebach, D. Chem. Ber. 1980,
1
13, 1304. (d) Overman, L. E.; Ricca, D. J.; Tran, V. D. J. Am. Chem. Soc.
1997, 119, 12031.
of p-TolMgBr to methyl crotonate (7) with a catalytic amount
of CuI in ether at 0 °C afforded the methyl ester 8 in 80%
yield, which underwent a smooth intramolecular Friedel-
(
8) (a) Hook, J. M.; Mander, L. N. Nat. Prod. Rep. 1986, 3, 35. (b)
Schultz, A. G. J. Chem. Soc., Chem. Commun. 1999, 1263. (c) Rabideau,
P. W.; Marcinow, Z. In Organic Reactions; Paquette, L. A. ed.; Wiley:
New York, 1992; Vol. 42, Chapter 1.
5
Crafts acylation to indanone 9 in 93% yield. To reach
(
9) (a) Plieninger, H.; Ege, G. Angew. Chem. 1958, 70, 505. (b) Hendry,
D. G.; Schuetzle, D. J. Am. Chem. Soc. 1975, 97, 7123.
10) Baker, A. J.; Goudie, A. C. J. Chem. Soc., Chem. Commun. 1972,
25.
11) For recent review, see: (a) Pereira, S.; Srebnik, M. Aldrichimica
6
carboxyindanol 6, 9 was reduced under Luche conditions
(
at -78 °C to provide a 10:1 ratio of the required syn vs anti
diastereomeric indanol 10 in 96% yield. Finally, carboxyl-
9
(
7
ation by means of directed ortho metalation gave the desired
Acta 1993, 26, 17. For examples, see: (b) McMurry, J. E.; Andrus, A.;
Ksander, G. M.; Musser, J. H.; Johnson, M. A. J. Am. Chem. Soc. 1979,
1
01, 1330. (c) Ireland, R. E.; Godfrey, J. D.; Thaisrivongs, S. J. Am. Chem.
(
5) Corey, E. J.; Behforouz, M.; Ishiguro, M. J. Am. Chem. Soc. 1979,
01, 1608.
6) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.
Soc. 1981, 103, 2446. (d) Deng, W.; Jensen, M. S.; Overman, L. E.; Rucker,
P. V.; Vionnet, J.-P. J. Org. Chem. 1996, 61, 6760. (e) Nussbaumer, C.;
Fr a´ ter, G.; Kraft, P. HelV. Chim. Acta 1999, 82, 1016.
1
(
280
Org. Lett., Vol. 3, No. 2, 2001