One-Step Conversion of Pyridine N-Oxides to
Tetrazolo[1,5-a]pyridines
John M. Keith
Johnson & Johnson Pharmaceutical Research & DeVelopment,
L.L.C. 3210 Merryfield Row, San Diego, California 92121
ReceiVed September 1, 2006
FIGURE 1. Tetrazolopyridines as intermediates.
Pyridine N-oxides were converted to tetrazolo[1,5-a]pyridines
in good to excellent yield by heating in the presence sulfonyl
or phosphoryl azides and pyridine in the absence of solvent.
Various sulfonyl and phosphoryl azides were screened for
reactivity under a standard set of conditions. Diphenyl
phosphorazidate was the most convenient reagent and gave
high yields. Reaction optimization, scope, and scalability are
discussed.
8
the aminopyridine via a Staudinger reaction. Cycloaddition with
9
terminal alkynes to give the corresponding triazole has also
been demonstrated. Reactivity not typical of azides includes
reduction of the pyridine ring to give aliphatic tetrazoles and
alkylation or arylation of the tetrazole to give otherwise
difficult to access N-substituted bicyclic tetrazoles.
10
11
12
Tetrazolopyridines are typically prepared by heating a 2-ha-
lopyridine in the presence of NaN3 in a polar solvent. The
precursor halopyridine is typically prepared from the pyridone
or N-oxide or by direct halogenation of the pyridine ring.
There were two reports of tetrazolopyridines prepared directly
13
14
1
5
16
Organic azides are especially versatile functional groups.
1
Azides are commonly used as precursors to primary amines,
17
from the N-oxides using toluenesulfonyl azide (TsN3) and
2
3
nitrenes, and triazoles. Azides adjacent to a heteroaromatic
nitrogen atom exist in equilibrium with the corresponding
tetrazole. Substituents on the heteroaromatic ring can influence
1
8
diphenyl phosphorazidate (DPPA), but neither examined the
reaction in any depth. We elected to reexamine the conversion
of pyridine N-oxides to tetrazolopyridines with the goals of
optimizing reaction conditions, determining substrate scope, and
developing the process for multigram scale.
4
5
the ratio of products at equilibrium, but in most instances, the
tetrazole is the predominant species present. Despite the
dominance of the tetrazole in the azide/tetrazole equilibrium,
reactivity typical of azides can be observed. Tetrazolopyridines,
Figure 1, can be converted to the pyridylnitrene under both
(
7) (a) Reisinger, A.; Koch, R.; Wentrup, C. J. Chem. Soc., Perkin Trans.
1 1998, 15, 2247-2250. (b) Kuzaj, M.; Luerssen, H.; Wentrup, C. Angew.
6
7
thermal and photochemical conditions and can be reduced to
Chem. 1986, 98, 476-477.
(
5366.
8) Sasaki, T.; Kanematsu, K.; Murata, M. Tetrahedron 1971, 27, 5359-
(1) (a) Boruah, A.; Baruah, M.; Prajapati, D.; Sandhu, J. S. Synlett 1997,
1
2
253-1254. (b) Vaultier, M.; Knouzi, N.; Carrie, R. Tetrahedron Lett. 1983,
(9) (a) Zhong, P.; Guo, S.-R. Chin. J. Chem. 2004, 22, 1183-1186. (b)
4, 763-764. (c) Boyer, J. H. J. Am. Chem. Soc. 1951, 73, 5865-5866.
Rogers, R. B.; Gerwick, B. C.; Egli, E. A. US Pat. 4474599, 1984.
(10) Boyer, J. H.; Chang, M. S.; Remisch, R. F. J. Org. Chem. 1960,
25, 286-287.
(2) (a) Tsao, M.-L.; Platz, M. S. J. Am. Chem. Soc. 2003, 125, 12014-
1
2025. (b) Murata, S.; Yoshidome, R.; Satoh, Y.; Kato, N.; Tomioka, H. J.
Org. Chem. 1995, 60, 1428-1434. (c) Albini, A.; Bettinetti, G.; Minoli,
G. J. Am. Chem. Soc. 1991, 113, 6928-6934.
(11) (a) Cmoch, P.; Wiench, J. W.; Stefaniak, L.; Sitkowski, J. J. Mol.
Struct. 1999, 477, 119-125. (b) Messmer, A.; Hajos, G.; Juhasz-Riedl, Z.;
Sohar, P. J. Org. Chem. 1988, 53, 973-975.
(3) (a) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P.
R.; Taylor, P. R.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
(12) Messmer, A.; Hajos, G.; Fleischer, J.; Czugler, M. Monatsh. Chem.
1985, 116, 1227-1231.
2
002, 41, 1053-1057. (b) Angell, Y.; Burgess, K. J. Org. Chem. 2005, 70,
9
595-9598.
(13) (a) Boyer, J. H.; Schoen, W. J. Am. Chem. Soc. 1956, 78, 423-
425. (b) Carboni, S.; Da Settimo, A.; Ferrarini, P. L.; Pirisino, G. Gazz.
Chim. Ital. 1966, 96, 1456-1469.
(
4) Brigas, A. F. Sci. Synth. 2004, 13, 861-915.
(5) (a) Karvellas, C.; Williams, C. I.; Whitehead, M. A.; Jean-Claude,
B. J. THEOCHEM 2001, 535 199-215. (b) Kanyalkar, M.; Coutinho, E.
C. Tetrahedron 2000, 56, 8775-8777. (c) Cmoch, P.; Stefaniak, L.; Webb,
G. A. Magn. Reson. Chem. 1997, 35, 237-242. (d) Guimon, C.; Khayar,
S.; Pfister-Guillouzo, G.; Claramunt, R. M.; Elguero, J. Spectrosc. Lett.
(14) (a) Seide, O. Ber. 1926, 59B, 2465-2473. (b) Henecka, H. Ann.
1953, 583, 110-128.
(15) Lee, C.-S.; Ohta, T.; Shudo, K.; Okamoto, T. Heterocycles 1981,
16, 1081-1084.
1
981, 14, 747-753. (e) Boyer, J. H.; Miller, E. J., Jr. J. Am. Chem. Soc.
(16) Boudakian, M. M.; Frulla, F. F.; Gavin, D. F.; Zaslowsky, J. A. J.
Heterocycl. Chem. 1967, 4, 375-376.
1
959, 81, 4671-4673. (f) Denisov, A. Yu.; Krivopalov, V. P.; Mamatyuk,
V. I.; Mamaev, V. P. Magn. Reson. Chem. 1988, 26, 42-46.
(17) Reddy, K. S.; Iyengar, D. S.; Bhalerao, U. T. Chem. Lett. 1983,
1745-1748.
(6) (a) Simoni, D.; Rondanin, R.; Furno, G.; Aiello, E.; Invidiata, F. P.
Tet. Lett. 2000, 41, 2699-2703. (b) Wentrup, C.; Winter, H. W. J. Am.
Chem. Soc. 1980, 102, 6159-6161.
(18) Andrews, D. M.; Page, T. C. M.; Peach, J. M.; Pratt, A. J. J. Chem.
Soc., Perkin Trans. 1 1995, 1045-1048.
10.1021/jo061819j CCC: $33.50 © 2006 American Chemical Society
9
540
J. Org. Chem. 2006, 71, 9540-9543
Published on Web 11/14/2006