ChemComm
Page 4 of 5
DOI: 10.1039/C5CC03616J
emission properties similar to the monomer. Dimer F is therefore
(PROMETEO/2012/053)
and
Comunidad
de
Madrid
proposed as the most plausible associate for compounds 1 and 2.
To rationalize how dimer F can grow up from such nonplanar,
distorted disposition of the monomers, the tetramer shown in Fig
5 was built up through an imidazole−amide−imidazole Hꢀbond
sequence. The minimumꢀenergy geometry computed at the
B97D3/6ꢀ31G** level for the tetramer clearly reveals that the Hꢀ
bonding motifs are preserved along the different monomeric
pairs. The average NH(amide)−N(imizadole) contact is computed
10 at 2.18 Å, whereas the CO(amide)−HN(imizadole) interaction is
calculated at 1.82 Å. The total interaction energy in the tetramer
reaches –182.1 kcal/mol, which corresponds with an Eint = –60.7
kcal/mol per monomer pair. This value is very close to the Eint
computed for dimer F (–61.7 kcal/mol), suggesting that: (i) the
15 oligomer can easily grow keeping the strong Hꢀbond pattern and
the stabilizing CꢀH···π forces, and (ii) the degree of cooperativity
in the supramolecular polimerization should be very small.
(NanoBIOSOMA, S2013/MITꢀ2807) is acknowledged. JC thanks
the MECD for a doctoral FPU grant.
5
45 Notes and references
aDepartamento de Química Orgánica, Facultad de Ciencias Químicas,
Universidad Complutense de Madrid, 28040 Madrid (Spain); E-mail:
bInstituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna
† Electronic Supplementary Information (ESI) available: Figures S1ꢀS12,
theoretical computational details and experimental section. See
DOI: 10.1039/b000000x/
‡ These authors contributed equally
55
60
65
70
75
80
1
2
A. Laurent, Ann. Chim. Phys. 1837, 66, 136.
C. Wang, H. Dong, W. Hu, Y. Liu and D. Zhu, Chem Rev. 2012, 112,
2208.
3
4
T. M. FigueiraꢀDuarte and K. Müllen, Chem. Rev. 2011, 111, 7260.
(a) N. Tchebotareva, X. M. Yin, M. D. Watson, P. Samori, J. P. Rabe
and K. Müllen, J. Am. Chem. Soc. 2003, 125, 9734; (b) D.
Venkataraman, S.; Lee, J. S. Zhang and J. S.; Moore, Nature 1994,
371, 591.
5
6
7
(a) A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chem. Soc.
Rev., 2008, 37, 109; (c) J. W. Steed, Chem. Soc. Rev., 2010, 46, 3686.
D. Kumar, K. R. J. Thomas, C.ꢀC. Lin and J.ꢀH. Jou, Chem.
Asian J. 2013, 8, 2111.
T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J.
Schenning, R. P. Sijbesma and E. W. Meijer, Chem. Rev. 2009, 109,
5687.
8
9
H. M. M. ten Eikelder, A. J. Markvoort, T. F. A. de Greef and P. A. J.
Hilbers, J. Phys. Chem. B 2012, 116, 5291.
F. M. Winnik, Chem. Rev. 1993, 93 , 587.
10 The emision corresponding to the pyrene monomer is only reached in
CHCl3 by using highly diluted (7 × 10–9 M), deoxygenated solutions
(Fig. S4, ESI†).
11 Y. Kamikawa and T. Kato, Langmuir, 2007, 23, 274.
12 (a) M. M. J. Smulders, A. P. H. J. Schenning and E. W. Meijer, J.
Am. Chem. Soc., 2008, 130, 606; (b) F. García, P. A. Korevaar, A.
Verlee, E. W. Meijer, A. R. A. Palmans and L. Sánchez, Chem.
Commun. 2013, 49, 8674.
13 (a) Y. Matsunaga, N. Miyajima, Y. Nakayasu, S. Sakai and M.
Yonenaga, Bull. Chem. Soc. Jpn. 1988, 61, 207; (b) F. García, P. M.
Viruela, E. Matesanz, E. Ortí and L. Sánchez, Chem. Eur. J. 2011,
17, 7755.
85 14 Prior to this ROESY experiment, the aggregation of 1 was assessed
by diffusionꢀordered spectroscopy (DOSY) NMR, which reveals a
larger value of the diffusion coefficient when compared to a more
diluted solution (Fig. S6b, ESI†). A. Wong, R. Ida, L. Spindler and
G. Wu, J. Am. Chem. Soc. 2005, 127, 6990.
Fig. 5. Top (a) and side (b) views of the B97D3/6ꢀ31G**ꢀoptimized
20 geometry calculated for the tetramer of 1. Dotted lines emphasise the Hꢀ
bonding array established between the imidazole and amide units. Only
hydrogen atoms involved in Hꢀbonding interactions are shown.
In summary, we have synthesised pyreneimidazoles 1 and 2
that prevents the formation of excimers upon aggregation. The
25 number and type of nonꢀcovalent interactions operating in the
aggregation of these pyrene derivatives results in an amazing
scenario of possibilities for 1 and 2 to selfꢀassemble. Both
experimental and theoretical studies demonstrate that the
formation of the aggregates is mainly governed by the Hꢀbonding
30 interaction between the amide functionality and the imidazole
moiety, together with a number of CꢀH···π interactions. The
absence of πꢀπ interactions between the pyrene cores determines
that the aggregate preserves the blueꢀemitting properties of the
monomer. The results presented herein demonstrate the complex
35 pathway followed by 1 and 2 to finally yield blueꢀemitting
supramolecular aggregates and contribute to shed light into the
relationship between functionality and supramolecular
polymerization.
Financial support by the MINECO of Spain (CTQ2011ꢀ22581
40 and CTQ2012ꢀ31914), European Feder funds (CTQ2012ꢀ31914),
UCM (UCMꢀSCHꢀPR34/07ꢀ15826), Generalitat Valenciana
4
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]