10.1002/anie.201913781
Angewandte Chemie International Edition
COMMUNICATION
In stark contrast to this, the iPr2-substituted rotaxanes 1b/2b give
significantly higher stereoinduction without lowering the reaction
rates (88/87% conversion, 53/37% ee), while their non-
interlocked counterparts are slightly slower and significantly less
stereoselective (76/78% conversion, 9/7% ee). The same trend
can be observed upon variation of the substrate by using
differently substituted Michael-acceptors 7b/c, featuring
p-OMe/p-NO2 substituents, which show moderate stereo-
selectivity in case of rotaxane 1b (44/49% ee), but poor stereo-
selectivity for the non-interlocked catalyst (16/14% ee).
[6] a) E. M. G. Jamieson, F. Modicom, S. M. Goldup, Chem. Soc. Rev. 2018,
47, 5266-5311; b) N. H. Evans, Chem. Eur. J. 2018, 24, 3101-3112; c) N.
Pairault, J. Niemeyer, Synlett 2018, 689-698.
[7] S. Hoekman, M. O. Kitching, D. A. Leigh, M. Papmeyer, D. Roke, J. Am.
Chem. Soc. 2015, 137, 7656-7659.
[8] A.
W.
Heard,
S.
M.
Goldup,
ChemRxiv 2019,
DOI:
10.26434/chemrxiv.9701789.v1.
[9] a) A. Martinez-Cuezva, M. Marin-Luna, D. A. Alonso, D. Ros-Ñiguez, M.
Alajarin, J. Berna, Org. Lett. 2019, 21, 5192-5196; b) V. Blanco, D. A. Leigh,
V. Marcos, J. A. Morales-Serna, A. L. Nussbaumer, J. Am. Chem. Soc.
2014, 136, 4905-4908.
[10] a) M. Dommaschk, J. Echavarren, D. A. Leigh, V. Marcos, T. A. Singleton,
Angew. Chem. Int. Ed. 2019, 58, 14955-14958; b) Y. Cakmak, S. Erbas-
Cakmak, D. A. Leigh, J. Am. Chem. Soc. 2016, 138, 1749-1751.
[11] a) K. Xu, K. Nakazono, T. Takata, Chem. Lett. 2016, 45, 1274-1276; b) Y.
Tachibana, N. Kihara, T. Takata, J. Am. Chem. Soc. 2004, 126, 3438-3439;
c) Y. Tachibana, N. Kihara, K. Nakazono, T. Takata, Phosphorus, Sulfur
Silicon Relat. Elem. 2010, 185, 1182-1205.
Despite these clear trends and the enhanced stereoselectivities
for the rotaxane-catalysts, we were wondering why the absolute
stereoselectivity remains moderate. Based on DFT-calculations,
it seems that the racemic Michael-addition between free MeLiw
and Pho still remains kinetically competitive over nearly the same
barrier as the channel involving the chiral phosphate, even in the
new catalyst design. We will address this fact in due course by
further modification of the rotaxane-structures.
[12] R. Mitra, M. Thiele, F. Octa-Smolin, M. C. Letzel, J. Niemeyer, Chem.
Commun. 2016, 5977-5980.
[13] R. Mitra, H. Zhu, S. Grimme, J. Niemeyer, Angew. Chem. Int. Ed. 2017, 56,
11456-11459.
In summary, we could show that the mechanical bond can indeed
serve as an efficient tool for the modification and improvement of
organocatalysts. The mechanical linking leads to a significant
increase in reaction rates for all cases investigated here, which
can be attributed to the high local concentrations of the functional
groups in the [2]rotaxane-catalyst. In terms of stereoselectivity,
we established that the length of the thread has no significant
influence, while the exact substitution pattern of the macrocycle
[14] S. Mayer, B. List, Angew. Chem. Int. Ed. 2006, 45, 4193-4195.
[15] a) E. P. Avila, G. W. Amarante, ChemCatChem 2012, 4, 1713-1721; b) M.
Mahlau, B. List, Isr. J. Chem. 2012, 52, 630-638; c) M. Mahlau, B. List,
Angew. Chem. Int. Ed. 2013, 52, 518-533.
[16] a) H. G. O. Alvim, D. L. J. Pinheiro, V. H. Carvalho-Silva, M. Fioramonte, F.
C. Gozzo, W. A. da Silva, G. W. Amarante, B. A. D. Neto, J. Org. Chem.
2018, 83, 12143-12153; b) F. Duarte, R. S. Paton, J. Am. Chem. Soc. 2017,
139, 8886-8896; c) Z. Kang, Y. Wang, D. Zhang, R. Wu, X. Xu, W. Hu, Z.
Kang, W. Hu, J. Am. Chem. Soc. 2019, 141, 1473-1478; d) T. J. Seguin, S.
E. Wheeler, Angew. Chem. Int. Ed. 2016, 55, 15889-15893.
i
has a major impact. Introduction of bulky Pr-groups led to a
significant increase in stereoselectivity, however only in case of
the mechanically interlocked catalysts. This finding may well pave
the route for the generation of more selective interlocked catalysts
for such organocatalytic transformations that have failed to be
realized with high stereoselectivities up to date.
[17] a) F. Eckert, A. Klamt, AIChE J. 2002, 48, 369-385; b) P. Deglmann, K.
May, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2004, 384, 103-107; c) F.
Eckert, A. Klamt, 2015, COSMOtherm, Version C3.0, Release 16.01;
COSMOlogic GmbH & Co. KG, Leverkusen, Germany; d) S. Grimme,
Chem. Eur. J. 2012, 18, 9955-9964; e) S. Grimme, H. Kruse, L. Goerigk,
G. Erker, Angew. Chem. Int. Ed. 2010, 49, 1402-1405; f) S. Grimme, S.
Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465; g) A. Klamt,
G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 799-805; h) J. Tao,
J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91,
146401; i) F. Weigend, PCCP 2006, 8, 1057-1065; j) F. Weigend, R.
Ahlrichs, PCCP 2005, 7, 3297-3305; k) F. Weigend, F. Furche, R. Ahlrichs,
J. Chem. Phys. 2003, 119, 12753-12762; l) F. Weigend, M. Häser, H.
Patzelt, R. Ahlrichs, Chem. Phys. Lett. 1998, 294, 143-152; m) Y. Zhao, D.
G. Truhlar, J. Phys. Chem. A 2005, 109, 5656-5667; n) TURBOMOLE V7.3,
2018, a development of University of Karlsruhe and Forschungszentrum
Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available
Shushkov, J. Chem. Theor. Comput. 2017, 13, 1989-2009.
Acknowledgements
Funding by the Fonds der Chemischen Industrie (Liebig-
Fellowship to J.N.) and the German Research Foundation (DFG,
NI1273/2-1) is gratefully acknowledged. J. N. would like to thank
Prof. Carsten Schmuck for his support. We thank Prof. Benjamin
List (MPI Mülheim) for a generous donation of (S)-TRIP.
S.G. and H.Z. thank the German Science Foundation (DFG) for
financial support (Gottfried Wilhelm Leibnitz prize to S.G.).
[18] No further comparison with the combination of acyclic phosphoric acids +
threads was conducted since these did not differ in stereoselectivity in the
initial investigation using rotaxane 1a.
Keywords: mechanically interlocked molecules • rotaxanes •
organocatalysis • asymmetric catalysis • DFT
[1] J. F. Stoddart, Chem. Soc. Rev. 2009, 38, 1802-1820.
[2] M. Xue, Y. Yang, X. Chi, X. Yan, F. Huang, Chem. Rev. 2015, 115, 7398-
7501.
[3] G. Gil-Ramírez, D. A. Leigh, A. J. Stephens, Angew. Chem. Int. Ed. 2015,
54, 6110-6150.
[4] S. D. P. Fielden, D. A. Leigh, S. L. Woltering, Angew. Chem. Int. Ed. 2017,
56, 11166-11194.
[5] a) D. Sluysmans, J. F. Stoddart, Trends Chem. 2019, 1, 185-197; b) J. E.
Lewis, M. Galli, S. M. Goldup, Chem. Commun. 2016, 298-312; c) V.
Blanco, D. A. Leigh, V. Marcos, Chem. Soc. Rev. 2015, 44, 5341-5370; d)
E. A. Neal, S. M. Goldup, Chem. Commun. 2014, 5128-5142; e) D. A. Leigh,
V. Marcos, M. R. Wilson, ACS Catal. 2014, 4, 4490-4497.
This article is protected by copyright. All rights reserved.