ACS Catalysis
Page 14 of 17
Lichte, D.; Gooßen, L. J. Decarboxylative Ipso Amination of Acti-
vated Benzoic Acids. Angew. Chem. Int. Ed. 2019, 58, 892-896.
NMR spectroscopy facilities were partially supported
by the NSF (CHE-1228336). We thank Donna Black-
mond for helpful discussions of reaction kinetics.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(7) (a) Liang, Y.; Zhang, X.; MacMillan, D. W. C. Decarboxyla-
3
tive sp C–N Coupling via Dual Copper and Photoredox Cataly-
sis. Nature. 2018, 559, 83-88. (b) Liu, Z.-J.; Lu, X.; Wang, G.; Li,
L.; Jiang, W.-T.; Wang, Y.-D.; Xiao, B.; Fu, Y. Directing Group in
REFERENCES
(
1) (a) Bhunia, S.; Pawar, G. G.; Kumar, S. V.; Jiang, Y.; Ma, D.
Decarboxylative
Cross-Coupling:
Copper-Catalyzed
Site-
Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C
Bond Formation. Angew. Chem. Int. Ed. 2017, 56, 16136-16179; (b)
Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C.,
Copper Catalysed Ullmann Type Chemistry: from Mechanistic
Aspects to Modern Development. Chem. Soc. Rev. 2014, 43, 3525-
Selective C–N Bond Formation from Nonactivated Aliphatic
Carboxylic Acids. J. Am. Chem. Soc. 2016, 138, 9714-9719. (c)
Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C. Photoinduced,
Copper-Catalyzed Decarboxylative C–N Coupling to Generate
Protected Amines: An Alternative to the Curtius Rearrangement.
J. Am. Chem. Soc. 2017, 139, 12153-12156.
(8) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X.
Recent Advances in C–S bond Formation via C–H bond Func-
tionalization and Decarboxylation. Chem. Soc. Rev. 2015, 44, 291-
314.
(9) (a) Alcaraz, M.-L.; Atkinson, S.; Cornwall, P.; Foster, A. C.;
Gill, D. M.; Humphries, L. A.; Keegan, P. S.; Kemp, R.; Merifield,
E.; Nixon, R. A.; Noble, A. J.; O'Beirne, D.; Patel, Z. M.; Perkins,
J.; Rowan, P.; Sadler, P.; Singleton, J. T.; Tornos, J.; Watts, A. J.;
Woodland, I. A. Efficient Syntheses of AZD4407 via Thioether
Formation by Nucleophilic Attack of Organometallic Species on
Sulphur. Org. Process Res. Dev. 2005, 9, 555-569. (b) Feng, M.;
Tang, B.; Liang, S. H.; Jiang, X. Sulfur Containing Scaffolds in
Drugs: Synthesis and Application in Medicinal Chemistry. Curr.
Top. Med. Chem. 2016, 16, 1200–1216. (c) Hirate, K.; Uchida, A.;
Ogawa, Y.; Arai, T.; Yoda, K. Zaltoprofen, a Non-Steroidal Anti-
Inflammatory Drug, Inhibits Bradykinin-Induced Pain Responses
without Blocking Bradykinin Receptors. Neurosci. Res. 2006, 54,
288-294.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
3
550; (c) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang, W. Copper-
Catalyzed C–H Functionalization Reactions: Efficient Synthesis
of Heterocycles. Chem. Rev. 2015, 115, 1622-1651.
(2) (a) Perry, G. J. P.; Larrosa, I. Recent Progress in Decarboxy-
lative Oxidative Cross-Coupling for Biaryl Synthesis. Eur. J. Org.
Chem. 2017, 2017, 3517-3527. (b) Rodríguez, N.; Goossen, L. J.
Decarboxylative Coupling Reactions: A Modern Strategy for C–
C-Bond formation. Chem. Soc. Rev. 2011, 40, 5030-5048.
(
3) (a) Bhadra, S.; Dzik, W. I.; Goossen, L. J. Decarboxylative
Etherification of Aromatic Carboxylic Acids. J. Am. Chem. Soc.
012, 134, 9938-9941. (b) Hoover, J. M. Mechanistic Aspects of
2
Copper-Catalyzed Decarboxylative Coupling Reactions of (Het-
ero)Aryl Carboxylic Acids. Comments Inorg. Chem. 2017, 37, 169-
2
00.
4) (a) Baur, A.; Bustin, K. A.; Aguilera, E.; Petersen, J. L.;
(
Hoover, J. M. Copper and Silver Benzoate and Aryl Complexes
and their Implications for Oxidative Decarboxylative Coupling
Reactions. Org. Chem. Front. 2017, 4, 519-524. (b) Song, Q.; Feng,
Q.; Zhou, M. Copper-Catalyzed Oxidative Decarboxylative Aryla-
tion of Benzothiazoles with Phenylacetic Acids and α-
(10) Li, M.; Hoover, J. M., Aerobic Copper-Catalyzed Decar-
boxylative Thiolation. Chem. Commun. 2016, 52, 8733-8736.
(11) (a) Hu, L.; Wang, D.; Chen, X.; Yu, L.; Yu, Y.; Tan, Z.; Zhu,
G. Copper-Catalyzed Decarboxylative Methylthiolation of Aro-
matic Carboxylate Salts with DMSO. Org. Biomol. Chem. 2017, 15,
5674-5679. (b) Rong, G.; Mao, J.; Liu, D.; Yan, H.; Zheng, Y.;
2
Hydroxyphenylacetic Acids with O as the Sole Oxidant. Org.
Lett. 2013, 15, 5990-5993. (c) Moon, P. J.; Fahandej-Sadi, A.; Qian,
W.; Lundgren, R. J. Decarboxylative Benzylation of Aryl and
Alkenyl Boronic Esters. Angew. Chem. Int. Ed. 2018, 57, 4612-
4
616. (d) Patra, T.; Nandi, S.; Sahoo, S. K.; Maiti, D. Copper Me-
2
diated Decarboxylative Direct C–H Arylation of Heteroarenes
with Benzoic Acids. Chem. Commun. 2016, 52, 1432-1435.
Chen, J. Formation of C(sp )–S Bonds through Decarboxylation
of α-Oxocarboxylic Acids with Disulfides or Thiophenols. RSC
Adv., 2015, 5, 26461-26464. (c) Duan, Z.; Ranjit, S.; Zhang, P.; Liu,
X. Synthesis of Aryl Sulfides by Decarboxylative C-S Cross-
Couplings. Chem. Eur. J. 2009, 15, 3666-3669. (d) Ranjit, S.;
Duan, Z.; Zhang, P.; Liu, X. Synthesis of Vinyl Sulfides by Cop-
per-Catalyzed Decarboxylative C−S Cross-Coupling. Org. Lett.
2010, 12, 4134-4136.
(12) Li, X.; Yang, F.; Wu, Y.; Wu, Y. Copper-Mediated Oxida-
tive Decarboxylative Coupling of Arylpropiolic Acids with Dial-
kyl H-Phosphonates in Water. Org. Lett. 2014, 16, 992-995.
(13) (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Ko-
zlowski, M. C. Aerobic Copper-Catalyzed Organic Reactions.
Chem. Rev. 2013, 113, 6234-6458. (b) McCann, S. D.; Stahl, S. S.
Copper-Catalyzed Aerobic Oxidations of Organic Molecules:
Pathways for Two-Electron Oxidation with a Four-Electron Oxi-
dant and a One-Electron Redox-Active Catalyst. Acc. Chem. Res.
2015, 48, 1756-1766. (c) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S.
Copper-Catalyzed Aerobic Oxidative C-H Functionalizations:
Trends and Mechanistic Insights. Angew. Chem. Int. Ed. 2011, 50,
11062-11087.
(
5) (a) Tang, J.; Biafora, A.; Goossen, L. J. Catalytic Decarboxy-
lative Cross-Coupling of Aryl Chlorides and Benzoates without
Activating Ortho Substituents. Angew. Chem. Int. Ed. 2015, 54,
1
3130-13133. (b) Li, T.; Sun, P.; Yang, H.; Zhu, Y.; Yan, H.; Lu, L.;
Mao, J. Copper-Catalyzed Decarboxylative Coupling of Aryl Hal-
ides with Alkynyl Carboxylic Acids Performed in Water. Tetra-
hedron. 2012, 68, 6413-6419. (c) Shang, R.; Fu, Y.; Wang, Y.; Xu,
Q.; Yu, H.-Z.; Liu, L. Copper-Catalyzed Decarboxylative Cross-
Coupling of Potassium Polyfluorobenzoates with Aryl Iodides
and Bromides. Angew. Chem. Int. Ed. 2009, 48, 9350-9354. (d)
Qu, X.; Li, T.; Sun, P.; Zhu, Y.; Yang, H.; Mao, J. Highly Effective
Copper-Catalyzed Decarboxylative coupling of Aryl Halides with
Alkynyl Carboxylic Acids. Org. Biomol. Chem. 2011, 9, 6938-6942.
(e) Gooßen, L. J.; Deng, G.; Levy, L. M. Synthesis of Biaryls via
Catalytic Decarboxylative Coupling. Science. 2006, 313, 662-664.
(
f) Goossen, L. J.; Rodríguez, N.; Melzer, B.; Linder, C.; Deng, G.;
Levy, L. M. Biaryl Synthesis via Pd-Catalyzed Decarboxylative
Coupling of Aromatic Carboxylates with Aryl Halides. J. Am.
Chem. Soc. 2007, 129, 4824-4833.
(
6) (a) Zhang, Y.; Patel, S.; Mainolfi, N. Copper-Catalyzed De-
(14) Ueda, S.; Nagasawa, H. Synthesis of 2-Arylbenzoxazoles
by Copper-Catalyzed Intramolecular Oxidative C-O Coupling of
Benzanilides. Angew. Chem. Int. Ed. 2008, 47, 6411-6413.
(15) (a) Do, H.-Q.; Daugulis, O. An Aromatic Glaser−Hay Re-
action. J. Am. Chem. Soc. 2009, 131, 17052-17053. (b) Roane, J.;
Daugulis, O. Copper-Catalyzed Etherification of Arene C–H
carboxylative C–N coupling for N-Arylation. Chem. Sci. 2012, 3,
3196-3199. (b) Jia, W.; Jiao, N. Cu-Catalyzed Oxidative Amidation
of Propiolic Acids Under Air via Decarboxylative Coupling. Org.
Lett. 2010, 12, 2000-2003. (c) Pichette Drapeau, M.; Bahri, J.;
1
4
ACS Paragon Plus Environment