Tsuyoshi Tagata et al.
COMMUNICATIONS
GC and ICP analysis. The GC yield was determined using 4-
ethylbiphenyl as an internal standard (93%). The remaining
portion (3.112 g) was evaporated and distilled using a Kꢂgel-
rohr apparatus (oven temperature; 80–1008C, pressure; 2–
[3] O. Kinzel, L. Llauger-Bufi, G. Pescatore, M. Rowley, C.
Schulz-Fademrecht, E. Monteagudo, M. Fonsi, O. G.
Paz, F. Fiore, C. Steinkꢂhler, P. Jones, J. Med. Chem.
2009, 52, 3453–3456.
3
mmHg) to give analytically pure 1,3-ditrifluoromethyl-5-
[4] K. Ikegashira, T. Oka, S. Hirashima, S. Noji, H. Yama-
naka, Y. Hara, T. Adachi, J. Tsuruha, S. Doi, Y. Hase,
T. Noguchi, I. Ando, N. Ogura, S. Ikeda, H. Hashimoto,
J. Med. Chem. 2006, 49, 6950–6953.
[5] D. G. Lloyd, R. B. Hughes, D. M. Zisterer, D. C. Wil-
liams, C. Fattorusso, B. Catalanotti, G. Campiani, M. J.
Meegan, J. Med. Chem. 2004, 47, 5612–5615.
(
4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene as
a
1
white solid; yield: 258 mg (87%). H NMR: d=1.37 (s,
1
3
1
1
2H), 7.95 (s, 1H), 8.24 (s, 2H); C NMR: d=24.83, 84.84,
23.49 (q, JC,F =273 Hz), 124.72 (q, JC,F =3.3 Hz), 130.88 (q,
JC,F =33 Hz), 134.65 (d, JC,F =3.3 Hz).
[
[
[
[
6] Y. Sangvikar, K. Fischer, M. Schmidt, A. D. Schlꢂter, J.
Sakamoto, Org. Lett. 2009, 11, 4112–4115.
7] C. Jiao, K. W. Huang, J. Luo, K. Zhang, C. Chi, J. Wu,
Org. Lett. 2009, 11, 4508–4511.
Acknowledgements
8] A. D. Finke, J. S. Moore, Org. Lett. 2008, 10, 4851–
We thank Mr. Matsuo (Koei Chemical Company, Ltd.) and
Mr. Mizoguchi (Koei Chemical Company, Ltd.) for the ICP
analysis and Mr. Ishikawa (Koei Chemical Company, Ltd.)
for the GC-MS analysis. Financial support from Koei Chemi-
cal Company, Ltd. is gratefully acknowledged. This research
was conducted as part of Research for Promoting Technolog-
ical Seeds and was supported by JST Innovation Satellite
Ibaraki.
4
854.
9] a) P. Harrison, J. Morris, T. B. Marder, P. G. Steel, Org.
Lett. 2009, 11, 3586–3589; b) N. Iwadate, M. Suginome,
J. Organomet. Chem. 2009, 694, 1713–1717; c) T. S. Jo,
S. H. Kim, J. Shin, C. Bae, J. Am. Chem. Soc. 2009, 131,
1
656–1657; d) S. Kawamorita, H. Ohmiya, K. Hara, A.
Fukuoka, M. Sawamura, J. Am. Chem. Soc. 2009, 131,
5
1
058–5059; e) A. D. Finke, J. S. Moore, Org. Lett. 2008,
0, 4851–4854; f) T. A. Boebel, J. F. Hartwig, J. Am.
Chem. Soc. 2008, 130, 7534–7535; g) J. Shin, S. M.
Jensen, J. Ju, S. Lee, Z. Xue, S. K. Noh, C. Bae, Macro-
molecules 2007, 40, 8600–8608; h) S. Paul, G. A. Chota-
na, D. Holmes, R. C. Reichle, R. E. Maleczka Jr., M. R.
Smith III, J. Am. Chem. Soc. 2006, 128, 15552–15553;
i) J. Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka Jr. ,
M. R. Smith III, Science 2002, 295, 305–308.
References
[
1] a) M. Ruta, G. Laurenczy, P. J. Dyson, L. Kiwi-Minsker,
J. Phys. Chem. C 2008, 112, 17814–17819; b) M. I. Bur-
guete, H. Erythropel, E. Garcia-Verdugo, S. V. Luis, V.
Sans, Green Chem. 2008, 10, 401–407; c) H. R. Sahoo,
J. G. Kralj, K. F. Jensen, Angew. Chem. 2007, 119,
[10] a) T. Ishiyama, J. Takagi, Y. Yonekawa, J. F. Hartwig,
N. Miyaura, Adv. Synth. Catal. 2003, 345, 1103–1106;
b) T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R.
Anastasi, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124,
390–391; c) J. Takagi, K. Sato, J. F. Hartwig, T. Ishiya-
ma, N. Miyaura, Tetrahedron Lett. 2002, 43, 5649–5651;
d) T. Ishiyama, J. Takagi, Y. Yonekawa, J. F. Hartwig,
N. Miyaura, Angew. Chem. 2002, 114, 3182–3184;
Angew. Chem. Int. Ed. 2002, 41, 3056–3058. For re-
views, see; e) G. H. Hall, Boronic Acids; Wiley, Wein-
heim, Germany, 2005; f) T. Ishiyama, N. Miyaura, J. Or-
ganomet. Chem. 2003, 680, 3–11; g) P. Harrison, J.
Morris, P. G. Steel, T. B. Marder, Synlett 2009, 147–150;
h) I. A. I. Mkhalid, D. N. Coventry, D. Albesa-Jove,
A. S. Batsanov, J. A. K. Howard, R. N. Perutz, T. B.
Marder, Angew. Chem. 2006, 118, 503–505; Angew.
Chem. Int. Ed. 2006, 45, 489–491; i) I. A. I. Mkhalid,
J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hart-
wig, Chem. Rev. 2010, 110, 890–931.
5
5
806–5810; Angew. Chem. Int. Ed. 2007, 46, 5704–
708; d) N. Nikibin, M. Ladlow, S. V. Ley, Org. Process
Res. Dev. 2007, 11, 458–462; e) C. H. Hornung, M. R.
Mackley, I. R. Baxendale, S. V. Ley, Org. Process Res.
Dev. 2007, 11, 399–405; f) B. Desai, C. O. Kappe, J.
Comb. Chem. 2005, 7, 641–643; g) M. C. Bagley, R. L.
Jenkins, M. C. Lubinu, C. Mason, R. Wood, J. Org.
Chem. 2005, 70, 7003–7006; h) N. T. S. Phan, D. H.
Brown, P. Styring, Green Chem. 2004, 6, 526–532; i) H.
Pennemann, P. Watts, S. J. Haswell, V. Hessel, H. Lçwe,
Org. Process Res. Dev. 2004, 8, 422–439; j) S. J. Has-
well, P. Watts, Green Chem. 2003, 5, 240–249; k) M.
Ueno, H. Hisamoto, T. Kitamori, S. Kobayashi, Chem.
Commun. 2003, 936–937; l) A. Kirschning, C. Altwick-
er, G. Drꢃnger, J. Harders, N. Hoffmann, U. Hoffmann,
H. Schçnfeld, W. Solodenko, U. Kunz, Angew. Chem.
2
3
001, 113, 4118–4120; Angew. Chem. Int. Ed. 2001, 40,
995–3998; m) S. J. Haswell, R. J. Middleton, B. O. Sul-
livan, V. Skelton, P. Watts, P. Styring, Chem. Commun.
[11] T. Tagata, M. Nishida, A. Nishida, Tetrahedron Lett.
2
001, 391–398; n) B. M. Khadilkar, V. R. Madyar, Org.
2009, 50, 6176–6179.
Process Res. Dev. 2001, 5, 452–455.
[12] Note: borylated product 2 was generated in 33% yield
based on the boron atoms of 1. BPDCA-cat contains
31% (w/w) of iridium and 3.7% (w/w) of boron by ICP
analysis. The molar ratio of iridium and boron is 1:2.1.
[
2] I. R. Baxendale, S. V. Ley, A. C. Mansfield, C. D.
Smith, Angew. Chem. 2009, 121, 4077–4081; Angew.
Chem. Int. Ed. 2009, 48, 4017–4021.
1666
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2010, 352, 1662 – 1666