146
Y. Sohtome et al.
CLUSTER
(7) Reetz, M. T. Chem. Rev. 1999, 99, 1121.
(8) Diastereoselective Henry Reaction of 2a with
Nitromethane in the Presence of (R,R)-1.
In conclusion, a highly diastereoselective Henry reaction
of a-substituted aldehydes and nitromethane was demon-
strated utilizing the guanidine–thiourea bifunctional orga-
nocatalyst 1. The differences of diastereoselectivity of a-
substituted aldehydes 2 with (R,R)- and (S,S)-1 can be
consistently explained in terms of the previously proposed
transition state for the asymmetric Henry reaction. Further
applications of the guanidine–thiourea bifunctional cata-
lyst 1 to a variety of reactions are in progress.
To a mixture of (R,R)-1 (8.4 mg, 0.0073 mmol), KI (6.0 mg,
0.037 mmol), 2a (24.0 mg, 0.073 mmol) and nitromethane
(392 mL, 0.73 mmol) in toluene (0.7 mL) was added 8 mM
aq KOH (0.7 mL) at 0 °C. The resulting mixture was stirred
vigorously at 0 °C for 24 h. Then, sat. aq NH4Cl was added,
and the organic layer was extracted with EtOAc. The
extracts were dried over MgSO4, filtered and concentrated in
vacuo, and the residue was purified by column
chromatography on silica gel (hexane–EtOAc = 20:1, 10:1,
5:1, 1:0) to give 3a (21.1 mg, 75%) and (R,R)-1 (8.3 mg,
99% recovery). The relative stereochemistry and
Acknowledgment
We thank Dr. Yukihiro Misumi for helpful discussions. This re-
search was supported by Nagase Science and Technology Founda-
tion. Y.S. is grateful for a JSPS Research Fellowship for Young
Scientists.
diastereoselectivity of 3a (95:5) were determined based on
the 1H NMR spectra reported by Corey et al.5 The
enantiomeric excess of 3a (99% ee) was determined by
means of chiral HPLC analysis. [CHIRALCEL OJ-H, 0.46
cm (∅) × 25 cm (L), n-hexane–ethanol = 90:10, 1.0 mL/min,
minor: 28.8 min, major: 31.3 min].
References and Notes
(9) (a) Boyle, P. H.; Convery, M. A.; Davis, A. P.; Hosken, G.
D.; Murray, B. A. J. Chem. Soc., Chem. Commun. 1992,
239. (b) van Haken, E.; Wynberg, H.; van Bolhuis, F. J.
Chem. Soc., Chem. Commun. 1992, 629. (c) Schmidtchen,
F. P.; Berger, M. Chem. Rev. 1997, 97, 1609.
(1) Henry, L. C. R. Hebd. Séances Acad. Sci. 1895, 120, 1265.
(2) For recent reviews, see: (a) Palomo, C.; Oiarbide, M.;
Mielgo, A. Angew. Chem. Int. Ed. 2004, 43, 5442.
(b) Luzio, F. A. Tetrahedron 2001, 57, 915. (c) Ono, N. The
Nitro Group in Organic Synthesis; Wiley-VCH: Weinheim,
2001. (d) Shibasaki, M.; Gröger, H. In Comprehensive
Asymmetric Catalysis, Vol. 3; Jacobsen, E. N.; Pfaltz, A.;
Yamamoto, H., Eds.; Springer: Berlin, 1999, 1075.
(e) Shibasaki, M.; Gröger, H.; Kanai, M. In Comprehensive
Asymmetric Catalysis, Suppl. 1; Jacobsen, E. N.; Pfaltz, A.;
Yamamoto, H., Eds.; Springer: Heidelberg, 2004, 131.
(3) Selected examples using TBAF as a base, see:
(a) Hanessian, S.; Devasthale, P. V. Tetrahedron Lett. 1996,
37, 987. (b) Soengas, R. G.; Esteves, J. C.; Esteves, R. J.
Org. Lett. 2003, 5, 4457. (c) Bernardi, L.; Bonini, B. F.;
Dessole, G.; Fochi, M.; Comes-Franchini, M.; Gavioli, S.;
Ricci, A.; Varchi, G. J. Org. Chem. 2003, 68, 1418.
(d) Looper, R. E.; Williams, R. M. Angew. Chem. Int. Ed.
2004, 43, 2930. (e)HighlydiastereoselectiveHenry reaction
under high pressure, see: Misumi, Y.; Matsumoto, K.
Angew. Chem. Int. Ed. 2002, 41, 1031.
(10) Reviews, see: (a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32,
289. (b) Pihko, P. M. Angew. Chem. Int. Ed. 2004, 43, 2062.
(c) Asymmetric reaction using Jacobsen’s catalyst, see:
Fuerst, D. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127,
8964; and references therein. (d) Takemoto’s bifunctional
catalyst, see: Hoashi, Y.; Okino, T.; Takemoto, Y. Angew.
Chem. Int. Ed. 2005, 44, 807; and references therein.
(e) Bis-thiourea-type catalyst, see: Sohtome, Y.; Tanatani,
A.; Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett. 2004,
45, 5589. Other catalysts, see: (f) Sohtome, Y.; Tanatani,
A.; Hashimoto, Y.; Nagasawa, K. Chem. Pharm. Bull. 2004,
52, 477. (g) Vakulya, B.; Varga, S.; Csampai, A.; Soos, T.
Org. Lett. 2005, 7, 1967.
(11) The stereochemistry of 3i was determined from the NOE of
5i. The stereochemistry of 3j was determined by comparison
of the 1H NMR spectrum with that of 3i (Scheme 1).
NOE
NO2
(4) Sasai, H.; Kim, W.-S.; Suzuki, T.; Shibasaki, M.; Misuda,
M.; Hasegawa, J.; Ohashi, T. Tetrahedron Lett. 1994, 35,
6123.
(5) Corey, E. J.; Zhang, F.-Y. Angew. Chem. Int. Ed. 1999, 38,
1931.
OH
H
O
1) HF, MeCN, r.t.
H
Ph
NO2
Ph
O
2) acetone dimethyl acetal
PTS, CH2Cl2, r.t.
3i
OTBS
Me
5i
Me
(6) (a) Chinchilla, R.; Najera, C.; Sanchez-Agullo, P.
Tetrahedron: Asymmetry 1994, 5, 1393. (b) Allingham, M.
T.; Howard-Jones, A.; Murphy, P. J.; Thomas, D. A.;
Caulkett, P. W. R. Tetrahedron Lett. 2003, 44, 8677.
(c) Nagasawa, K.; Georgieva, A.; Takahashi, H.; Nakata, T.
Tetrahedron 2000, 56, 187. (d) Nagasawa, K.; Georgieva,
A.; Takahashi, H.; Nakata, T. Tetrahedron 2001, 57, 8959.
(e) Kita, T.; Georgieva, A.; Hashimoto, Y.; Nakata, T.;
Nagasawa, K. Angew. Chem. Int. Ed. 2002, 41, 2832.
(f) Sohtome, Y.; Hashimoto, Y.; Nagasawa, K. Adv. Synth.
Catal. 2005, 347, 1643. (g) Ishikawa, T.; Isobe, T. Chem.–
Eur. J. 2002, 8, 553. (h) Corey, E. J.; Grogan, M. J. Org.
Lett. 1999, 1, 157. (i) Ma, D.; Pan, Q.; Han, F. Tetrahedron
Lett. 2002, 43, 9401.
Scheme 1
Synlett 2006, No. 1, 144–146 © Thieme Stuttgart · New York