ORGANIC
LETTERS
2
004
Vol. 6, No. 19
293-3296
Copper-Mediated Cross-Coupling
Reactions of N-Unsubstituted
Sulfoximines and Aryl Halides
3
Gae Young Cho, Pauline R e´ my, Jenny Jansson, Christian Moessner, and
Carsten Bolm*
Institute of Organic Chemistry, RWTH Aachen UniVersity, Professor-Pirlet-Str. 1,
D-52056 Aachen, Germany
Received June 23, 2004
ABSTRACT
Copper-mediated cross-coupling reactions of sulfoximines with aryl iodides and aryl bromides provide N-arylated sulfoximines in high yields.
The method is complementary to the known palladium-catalyzed N-arylation and allows the preparation of N-arylated sulfoximines, which have
previously been inaccessible.
1
Due to their applicability as chiral auxiliaries, ligands in
which aryl iodides, bromides, nonaflates, and triflates can
2
4
asymmetric catalysis, and building blocks in pseudo-
peptides, sulfoximines have attracted much attention. Their
preparation is well-established, and a number of synthetic
approaches have been developed, which give access to a
variety of derivatives in a relatively straightforward manner.
be used. This method has been extended by Harmata toward
3
5
couplings of aryl chlorides and was utilized in a number of
2
syntheses to give new sulfoximines as ligands for catalysis,
6
7
benzothiazines, and other cyclic derivatives. Despite this
success, some limitations of the palladium catalysis such as
long reaction times, restricted substrate scope, and high
metal/ligand (catalyst) cost motivated the search for an alter-
native cross-coupling protocol. Recently, copper-mediated
or -catalyzed carbon-heteroatom bond formations (C-O,
1
For N-arylations of sulfoximines we developed a stereo-
specific palladium-catalyzed cross-coupling reaction, in
(
1) Reviews: (a) Johnson, C. R. Acc. Chem. Res. 1973, 6, 341. (b) Pyne,
S. G. Sulfur Rep. 1999, 21, 281. (c) Reggelin, M.; Zur, C. Synthesis 2000,
8
,9
C-N, C-S) have been developed by several groups after
1
.
10
11
12
initial independent studies by Chan, Evans, and Lam.
(
2) For recent examples, see: (a) Bolm, C.; Simic, O. J. Am. Chem.
Soc. 2001, 123, 3830. (b) Bolm, C.; Simic, O.; Martin, M. Synlett 2001,
878. (c) Harmata, M.; Ghosh, S. K. Org. Lett. 2001, 3, 3321. (d) Bolm,
They can be used in transformations of a wide range of
1
C.; Martin, M.; Simic, O.; Verrucci, M. Org. Lett. 2003, 5, 427. (e) Bolm,
C.; Verrucci, M.; Simic, O.; Cozzi, P. G.; Raabe, G.; Okamura, H. Chem.
Commun. 2003, 2826. (f) Bolm, C.; Martin, M.; Gescheidt, G.; Palivan,
C.; Neshchadin, D.; Bertagnolli, H.; Feth, M.; Schweiger, A.; Mitrikas, G.;
Harmer, J. J. Am. Chem. Soc. 2003, 125, 6222. Reviews: (g) Harmata, M.
Chemtracts 2003, 16, 660. (h) Okamura, H.; Bolm, C. Chem. Lett. 2004,
(4) (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731.
(b) Bolm, C.; Hildebrand, J. P. J. Org. Chem. 2000, 65, 169. (c) Bolm, C.;
Hildebrand, J. P.; Rudolph, J. Synthesis 2000, 911.
(5) Harmata, M.; Hong, X.; Ghosh, S. K. Tetrahedron Lett. 2004, 45,
5223.
(6) Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999, 38, 2419.
(7) (a) Bolm, C.; Martin, M.; Gibson, L. Synlett 2002, 832. (b) Bolm,
C.; Okamura, H.; Verrucci, M. J. Organomet. Chem. 2003, 687, 444.
(8) For a review, see: Ley, S. V.; Thomas, A. W. Angew. Chem., Int.
Ed. 2003, 42, 5400.
(9) For recent examples of Cu-promoted C-N couplings, see: (a) Okano,
K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 4987. (b) Xu, G.;
Wang, Y.-G. Org. Lett. 2004, 6, 985.
3
3, 482 and references therein.
3) (a) Bolm, C.; Kahmann, J. D.; Moll, G. Tetrahedron Lett. 1997, 38,
169. (b) Bolm, C.; Moll, G.; Kahmann, J. D. Chem. Eur. J. 2001, 7, 1118.
(
1
(
c) Tye, H.; Skinner, C. L. HelV. Chim. Acta 2002, 85, 3272. (d) Bolm, C.;
M u¨ ller, D.; Hackenberger, C. P. R. Org. Lett. 2002, 4, 893. (e) Bolm, C.;
M u¨ ller, D.; Dalhoff, C.; Hackenberger, C. P. R.; Weinhold, E. Bioorg. Med.
Chem. Lett. 2003, 13, 3207.
1
0.1021/ol048806h CCC: $27.50 © 2004 American Chemical Society
Published on Web 08/18/2004