Journal of the American Chemical Society
imental value, the model prediction is close enough to sup-
Page 4 of 5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
port the general idea that the low KIE with 3c is the result of
a combination of greater excess energy in 3c relative to 3b
and a nonstatistical distribution of that energy.
(3) (a) Crim, F. F. Faraday Discuss. 2012, 157, 9-26. (b) Ebrahimi, M.;
Guo, S. Y.; McNab, I. R.; Polanyi, J. C. J. Phys. Chem. Lett. 2010, 1, 2600-
605. (c) Liu, J. Song, K.; Hase, W. L.; Anderson, S. L. J. Am. Chem. Soc.
004, 126, 8602-8603. (d) Kroes, G.-J.; Gross, A.; Baerends, E.-J.;
Scheffler, M.; McCormack, D. A. Acc. Chem. Res. 2002, 35, 193-200. (e)
Halstead, D.; Holloway, S. J. Chem. Phys. 1990, 93, 2859-2870. (f) Voth, G.
A.; Hochstrasser, R. M. J. Phys. Chem. 1996, 100, 13034-13049. (g) Camp-
bell, V. L.; Chen, N.; Guo, H.; Jackson, B. Utz, A. L. J. Phys. Chem. A 2015,
119, 12434-12441. (h) Xu, L.; Doubleday, C. E.; Houk, K. M. J. Am. Chem.
Soc. 2010, 132, 3029-3037. (i) Guo, H.; Jiang, B. Acc. Chem. Res. 2014 47,
2
2
Overall, the governance of statistical rate theories in the α-
cleavage of alkoxy radicals depends on the barrier for the
cleavage, the amount of vibrational energy available from
their formation, and the size of the system. With 3a, the bar-
rier is larger than vibrational energy engendered by its for-
mation, and TST governs the α-cleavage. With 3b, the avail-
able vibrational energy is greater than the barrier, but the
system is small and RRKM theory provides a reasonable pre-
diction of the selectivity. By increasing the size of the alkyl
chain, the vibrational energy in 3c is increased and the α-
cleavage occurs faster than equilibration of the vibrational
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
3
679-3685.
4) (a) Carpenter, B. K. Accounts Chem. Res. 1992, 25, 520-528. (b)
(
Debbert, S. L.; Carpenter, B. K.; Hrovat, D. A.; Borden, W. T. J. Am. Chem.
Soc. 2002, 124, 7896-7897. (c) Carpenter, B. K.; Harvey, J. N.; Orr-Ewing,
A. J. J. Am. Chem. Soc. 2016, 138, 4695-4705. (d) Doubleday, C., Jr.; Bol-
ton, K.; Hase, W. L. J. Am. Chem. Soc. 1997, 119, 5251-5252. (e) Double-
day, C.; Suhrada, C. P.; Houk, K. N. J. Am. Chem. Soc. 2006, 128, 90-94. (f)
Biswas, B.; Collins, S. C.; Singleton, D. A. J. Am. Chem. Soc. 2014, 136,
energy. The α-cleavage selectivity becomes non-statistical,
but it can be approximately rationalized using a localized
statistical model.
3
740-3743. (g) Chen, Z.; Nieves-Quinones, Y.; Waas, J. R.; Singleton, D. A.
J. Am. Chem. Soc. 2014, 136, 13122-13125. (h) Oyola, Y.; Singleton, D. J.
Am. Chem. Soc. 2009, 131, 3130-3131. (i) Thomas, J. R.; Waas, J. R.; Har-
mata, M.; Singleton, D. A. J. Am. Chem. Soc. 2008, 130, 14544-14555. (j)
Ussing, B. R.; Hang, C.; Singleton, D. A. J. Am. Chem. Soc. 2006, 128, 7594-
The results here illustrate one new rule with respect to en-
ergy partitioning in reactions and how control of that parti-
tioning can lead to nonstatistical effects in experimental ob-
servations. We expect that other rules await discovery. On a
more general level, our results show how the behavior of a
reactive intermediate can depend on how it is formed, and we
are pursuing reactions that will make use of this history-
dependence to affect selectivity.
7
607. (k) Singleton, D. A.; Hang, C.; Szymanski, M. J.; Greenwald, E. E. J.
Am. Chem. Soc. 2003, 125, 1176-1177. (l) Yang, Z.; Yu, P.; Houk, K. N. J.
Am. Chem. Soc. 2016, 138, 4237-4242.
(5) Walling, C.; Padwa, A. J. Am. Chem. Soc. 1963, 85, 1593-1597.
(
6) (a) Orlando, J. J.; Tyndall, G. S. Chem. Rev. 2003, 103, 4657-4689.
b) Hayes, C. J.; Merle, J. K.; Haddad, C. M. Adv. Phys. Org. Chem. 2009,
3, 79-134. (c) Inoue, S.; Kumagai, T.; Tamezawa, H.; Aota, H.; Matsumo-
to, A.; Yokoyama, K.; Matoba, Y.; Shibano, M. Polymer J. 2010, 42, 716-
21. (d) Dean, R. T.; Fu, S.; Stocker, R.; Davies, M. J. Biochem. J. 1997,
(
4
7
ASSOCIATED CONTENT
324, 1-18. (e) Hartung, J.; Gottwald, T.; Spehar, K. Synthesis 2002, 1469-
1498.
Supporting Information.
(
7)(a) Singleton, D. A.; Szymanski, M. J. J. Am. Chem. Soc. 1999, 121,
Complete descriptions of experimental procedures, calculations,
and structures. The Supporting Information is available free of
charge on the ACS Publications website.
9455-9456. (b) Singleton, D. A.; Schulmeier, B. E. J. Am. Chem. Soc. 1999,
121, 9313-9317. (c) Gonzalez,-James, O. M.; Zhang, X.; Datta, A.; Hrovat,
D. A.; Borden, W. T.; Singleton, D. A. J. Am. Chem. Soc. 2010, 132, 12548-
1
2549.
8) Zheng, J.; Zhang, S.; Corchado, J. C.; Chuang, Y.-Y.; Coitino, E. L.;
(
AUTHOR INFORMATION
Ellingson, B. A.; Zheng, J.; Truhlar, D. G. GAUSSRATE, version 2009-A
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
We thank the NIH (Grant GM-45617) for financial support. H.
K. thanks the Japan Society for the Promotion of Science for a
Postdoctoral Fellowships for Research Abroad.
2
621.
(12) Hase, W. L.; Song, K. H.; Gordon, M. S. Comp. Sci. Eng. 2003, 5,
3
6-44.
(13) Schwarzer, D.; Kutne, P.; Schröder, C.; Troe, J. J. Chem. Phys.
2004, 121, 1754-1764.
14) Quijano, L. M. M.; Singleton, D. A. J. Am. Chem. Soc. 2011, 133,
3824-13827.
15) Meagher, J. F.; Chao, K. J.; Barker, J. R.; Rabinovitch, B. S. J. Phys.
Chem. 1974, 78, 2535-2543. See also: Rice, O. K. Z. Phys. Chem. B 1930, 7,
26-233.
REFERENCES
(
(
1) (a) Zare, R. N. Science 1998, 279, 1875-1879. (b) Crim, F. F. Acc.
Chem. Res. 1999, 32, 877-884.
2) (a) Polanyi, J. C.; Wong, W. H. J. Chem. Phys. 1969, 51, 1439-1450.
(b) Polanyi, J. C. Acc. Chem. Res. 1972, 5, 161-168.
1
(
(
2
ACS Paragon Plus Environment