In summary, a bimodal fluorescent MR contrast agent,
6-Gd3+-QD, has been developed by conjugation of CdSe/ZnS
QDs with a uridine-based paramagnetic complex (6-Gd3+).
The relaxivities of 6-Gd3+-QD are 655 and 572 mMꢀ1 sꢀ1 per
particle at 60 and 200 MHz, respectively. 6-Gd3+-QD can
smoothly penetrate the cell surface and can be delivered into
the intracellular regions of RAW 264.7 cells. Further, 6-Gd3+-QD
facilitates high-performance MR and fluorescence imaging. Since
this QD-conjugated T1 contrast agent easily labeled macrophages,
which are phagocytic cells and since it had low cytotoxicity,
6-Gd3+-QD as a bimodal MR/FR cellular imaging nanoprobe
can be used to probe similar phagocyte cells such as T cells,
B cells, neutrophils, granulocytes, and dendritic cells.
Fig. 4 Fluorescence microscopic images of RAW 264.7 cells labeled
with 6-Gd3+-QD. Bright-field microscopy images (A, C, E, G) and
fluorescence microscopic images (B, D, F, H) with blue (DAPI for
nucleus) and red (for 6-Gd3+-QD) are shown to be dependent on
QD concentration in cell culture media. Images were acquired using
490/20 nm excitation and fluorescent emission windows of 617/73 nm
(red). Scale bar: 10 mm.
This work was supported by a grant from the CRI project
(No. 2011-0000420) (JSK), (2011-0029263) (KSH), Korea
Basic Science Institute (T31403) (KSH) and WCU project
(R32-2008-000-20003-0) (JHJ) of Korea.
Notes and references
1 Y. D. Jin and X. H. Gao, Nat. Nanotechnol., 2009, 4, 571.
2 (a) X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung and
S. M. Nie, Nat. Biotechnol., 2004, 22, 969; (b) V. Bagalkot,
L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff,
R. Langer and O. C. Farokhzad, Nano Lett., 2007, 7, 3065.
3 (a) J. H. Gao, H. W. Gu and B. Xu, Acc. Chem. Res., 2009,
42, 1097; (b) E. H. Moriyama, G. Zhang and B. C. Wilson, Clin.
Pharmacol. Ther., 2008, 84, 267; (c) C. Xu, J. Xie, D. Ho, C. Wang,
N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin and S. Sun,
Angew. Chem., Int. Ed., 2007, 46, 173; (d) J. H. Choi, F. T. Nguyen,
P. W. Barone, D. A. Heller, A. E. Moll, D. Patel, S. A. Boppart
and M. S. Strano, Nano Lett., 2007, 7, 861.
Fig. 5 High-performance MR/FR dual imaging properties of
6-Gd3+-QD. T1-weighted MR images, at 4.7 T and 36 1C, of RAW
264.7 cells (107 cells each) labeled with Omniscans (A) and 6-Gd3+-QD
in pseudo color (B) in function of Gd3+ concentration, and signal-to-
noise ratios (SNRs) are compared to (C).
Efficiency of RAW MRI T1 complexes such as Omniscans
and Magnevists for nonspecific in vitro cell labeling is rather
low for MRI. The cell-labeling efficiency of 6-Gd3+-QD was
compared with that of the commercial MR contrast agent,
Omniscans. As shown in Fig. 5, the T1 shortening effect in
6-Gd3+-QD-labeled cells (Fig. 5(B)) is more dominant than
that in Omniscans-labeled cells (Fig. 5(A)). A notable fact is
that the positive contrast enhancement by using 6-Gd3+-QD
at 0.112 mM of Gd3+ was similar to that achieved by using
Omniscans at 5.6 mM. This implies that the labeling efficiency
of 6-Gd3+-QD was about 20-times higher than that of commercial
T1 CA of Omniscans, after taking into account the 2.4-fold higher
T1 relaxivity of 6-Gd3+-QD. The SNR value measured as a T1
positive contrast effect from MR images with 6-Gd3+-QD-labeled
macrophages (107 cells) markedly increased with Gd3+ (or QD)
concentrations lower than 5.6 mM Gd3+ (= 100 nM QD) in the
cell culture media, while there was little change with Omniscans
(Fig. 5(C)). By the conjugation of Gd3+ complex with QD
nanoparticles, the labeling efficiency in macrophages drama-
tically increased, resulting in a positive contrast of in vitro/
in vivo MR images due to accumulated cellular labeling of the
bimodal MR/FR imaging probe.
4 (a) N. L. Rosi and C. A. Mirkin, Chem. Rev., 2005, 105, 1547;
(b) Y. Song, X. Xu, K. Macrenaris, X.-Q. Zhang, C. Markin and
T. J. Meade, Angew. Chem., Int. Ed., 2009, 48, 9143.
5 M. M. Huber, A. B. Staubli, K. Kustedjo, M. H. B. Gray, J. Shih, S. E.
¨
Fraser, R. E. Jacobs and T. J. Meade, Bioconjugate Chem., 1998, 9, 242.
6 C. Brekke, S. C. Morgan, A. S. Lowe, T. J. Meade, J. Price,
S. C. Williams and M. Modo, NMR Biomed., 2007, 20, 77.
7 M. Modo, K. Mellodew, D. Cash, S. E. Fraser, T. J. Meade,
J. Price and S. C. Williams, NeuroImage, 2004, 21, 311.
8 A. Dirksen, S. Langereis, B. F. M. de Waal, M. H. P. van
Genderen, E. W. Meijer, Q. G. de Lussanet and T. M. Hackeng,
Org. Lett., 2004, 6, 4857.
9 (a) S. Bhuniya, H. Moon, H. Lee, K. S. Hong, S. Lee, D.-Y. Yu
and J. S. Kim, Biomaterials, 2011, 32, 6533; (b) R. N. Muller,
B. Raduchel, S. Laurent, J. Platzek, C. Pie
´
L. V. Elst, Eur. J. Inorg. Chem., 1999, 1949.
rart, P. Mareski and
¨
10 (a) W. C. W. Chan and S. Nie, Science, 1998, 281, 2016;
(b) M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau
and A. Triller, Science, 2003, 302, 442.
11 W. Liu, M. Howarth, A. B. Greytak, Y. Zheng, D. G. Nocera,
A. Y. Ting and M. G. Bawendi, J. Am. Chem. Soc., 2008, 130, 1274.
12 J. Takashi, Y. Yoshichika, F. Fuji, Y. Komai, J. Seki and
A. Seiyama, Chem. Commun., 2008, 5764.
13 J. H. Jung, K. Yoshida and T. Shimizu, Langmuir, 2002, 18, 8724.
14 (a) H. Yang, S. Santra, G. A. Walter and P. H. Holloway, Adv. Mater.,
2006, 18, 2890; (b) G. A. F. van Tilborg, W. J. M. Mulder, P. T. K.
Chin, G. Storm, C. P. Reutelingsperger, K. Nicolay and G. J. Strijkers,
Bioconjugate Chem., 2006, 17, 865; (c) G. J. Stasiuk, S. Tamang, D.
Imbert, C. Poillot, M. Giardiello, C. Tisseyre, E. L. Barbier, P. H. Fries,
M. de Waard, P. Reiss and M. Mazzanti, ACS Nano, 2011, 5, 8193.
15 P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem. Rev.,
1999, 99, 2293.
Although we assumed that the considerable increase in the
efficiency of intracellular delivery of 6-Gd3+-QD in macro-
phages may result from the phagocytosis of 6-Gd3+-QD, the
actual mechanism of interaction of the QD complexes with the
cell membrane and their entry into the cells is a complex
process that includes nonreceptor-mediated endocytosis.16
This mechanism will be investigated in the future.
16 H. Huang, E. Pierstorff, E. Osawa and D. Ho, Nano Lett., 2007,
7, 3305.
c
3220 Chem. Commun., 2012, 48, 3218–3220
This journal is The Royal Society of Chemistry 2012