Page 9 of 10
The Journal of Organic Chemistry
(
2) Fiedler, D.; Bergman, R. G.; Raymond, K. N. Supramolecular
catalysis of unimolecular transformation: Aza-cope
(25) Hooley, R. J.; Biros, S. M.; Rebek, J., Jr. A deep, water-soluble
a
cavitand acts as a phase-transfer catalyst for hydrophobic species.
Angew. Chem., Int. Ed. 2006, 45, 3517–3519.
(26) Holloway, L. R.; Bogie, P. M.; Lyon, Y.; Ngai, C.; Miller, T. F.; Julian,
R.R.; Hooley, R.J. Tandem reactivity of a self-assembled cage
catalyst with endohedral acid groups. J. Am. Chem. Soc. 2018, 140,
8078–8081.
(27) Bogie, P. M.; Holloway, L. R.; Ngai, C.; Miller, T. F.; Grewal, D. K.;
Hooley, R. J. A self-assembled cage with endohedral acid groups
both catalyzes substitution reactions and controls their
molecularity. Chem. Eur. J. 2019, 25, 10232–10238.
(28) (a) Hibbert, D. B.; Thordarson, P. The death of the Job plot,
transparency, open science and online tools, uncertainty
estimation methods and other developments in supramolecular
chemistry data analysis. Chem. Commun. 2016, 52, 12792–12805.
(b) Thordarson, P. Determining association constants from
titration experiments in supramolecular chemistry. Chem. Soc.
Rev. 2011, 40, 1305–1323.
(29) Mecozzi, S.; Rebek, J., Jr. The 55% solution: a formula for
molecular recognition in the liquid state. Chem. Eur. J. 1998, 4,
1016–1022.
(30) (a) Rizzuto, F. J.; Carpenter, J. P.; Nitschke, J. R. Multisite binding of
drugs and natural products in an entropically favorable,
heteroleptic receptor. J. Am. Chem. Soc. 2019, 141, 9087−9095. (b)
Meng, W.; Breiner, B.; Rissanen, K.; Thoburn, J. D.; Clegg, J. K.;
1
2
rearrangement within a self-assembled host. Angew. Chem., Int.
Ed. 2004, 43, 6748–6755.
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
3) (a) Yoshizawa, M.; Tamura, M.; Fujita, M. Diels-Alder in aqueous
molecular hosts: Unusual regioselectivity and efficient catalysis.
Science 2006, 312, 251–254. (b) Nishioka, Y.; Yamaguchi, T.;
Yoshizawa, M.; Fujita, M. Unusual [2+4] and [2+2] cycloadditions
of arenes in the confined cavity of self-assembled cages. J. Am.
Chem. Soc. 2007, 129, 7000–7001. (c) Martí-Centelles, V.;
Lawrence, A. L.; Lusby, P. J. High activity and efficient turnover by
a simple, self-assembled artificial Diels-Alderase. J. Am. Chem. Soc.
2018, 140, 2862–2868.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
4) (a) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Acid catalysis in
basic solution: A supramolecular host promotes orthoformate
hydrolysis. Science. 2007, 316, 85–88. (b) Cullen, W.; Misuraca, M.
C.; Hunter, C. A.; Williams, N. H.; Ward, M. D. Highly efficient
catalysis of the Kemp elimination in the cavity of a cubic
coordination cage. Nat. Chem. 2016, 8, 231–236. (c) Cullen, W.;
Metherell, A. J.; Wragg, A. B.; Taylor, C. G. P.; Williams, N. H.; Ward,
M. D. Catalysis in a cationic coordination cage using a cavity-
bound guest and surface-bound anions: inhibition, activation, and
autocatalysis. J. Am. Chem. Soc. 2018, 140, 2821–2828.
( 5) (a) Hong, C. M.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. Self-
assembled tetrahedral hosts as supramolecular catalysts Acc.
Chem. Res. 2018, 51, 2447–2455. (b) Kaphan, D. M.; Levin, M. D.;
Bergman, R. G.; Raymond, K. N.; Toste, F. D. A supramolecular
microenvironment strategy for transition metal catalysis. Science
2015, 350, 1235–1238.
8 6
Nitschke, J. R. A self-assembled M L cubic cage that selectively
encapsulates large aromatic guests. Angew. Chem., Int. Ed. 2011,
50, 3479–3483. (c) Ramsay, W. J.; Szczypiński, F. T.; Weissman, H.;
Ronson, T. K.; Smulders, M. M. J.; Rybtchinski, B.; Nitschke, J. R.
3
(
6) (a) Wang, J. Z.; Brown, C. J.; Bergman, R. G.; Raymond, K. N; Toste,
F. D. Hydroalkoxylation catalyzed by gold(I) complex
Designed enclosure enables guest binding within the 4200 Å
a
cavity of a self-assembled cube. Angew. Chem., Int. Ed. 2015, 54,
5636–5640.
encapsulated in a supramolecular host. J. Am. Chem. Soc. 2011,
133, 7358–7360. (b) Levin, M. D.; Kaphan, D. M.; Hong, C. M.;
Bergman, R. G.; Raymond, K. N.; Toste, F. D. Scope and mechanism
of cooperativity at the intersection of organometallic and
supramolecular catalysis. J. Am. Chem. Soc. 2016, 138, 9682–9693.
(31) (a) Brown, H.C. et al., in Braude, E.A. and F.C. Nachod
Determination of Organic Structures by Physical Methods,
Academic Press, New York, 1955; (b) Dippy, J. F. J.; Hughes, S. R.
C.; Rozanski, A. The dissociation constants of some symmetrically
disubstituted succinic acids. J. Chem. Soc. 1959, 2492–2498.
(
(
n
7) Harris, K.; Fujita, D.; Fujita, M. Giant hollow M L2n spherical
complexes: structure, functionalisation and applications. Chem.
Commun. 2013, 49, 6703–6712.
8) Zhang, Q.; Catti, L.; Tiefenbacher, K. Catalysis inside the hexameric
resorcinarene capsule. Acc. Chem. Res. 2018, 51, 2107−2114.
( 9) (a) MacGillivray, L. R.; Atwood, J. L. A chiral spherical molecular
assembly held together by 60 hydrogen bonds. Nature 1997, 389,
4
69–472. (b) Shivanyuk, A.; Rebek, J., Jr. Reversible encapsulation
by self-assembling resorcinarene subunits. Proc. Natl. Acad. Sci.
U.S.A. 2001, 98, 7662–7665.
(20) (a) Zhang, Q.; Tiefenbacher, K. Terpene cyclization catalyzed
inside a self-assembled cavity. Nat. Chem. 2015, 7, 197−202. (b)
Zhang, Q.; Catti, L.; Pleiss, J.; Tiefenbacher, K. Terpene cyclizations
inside
a supramolecular catalyst: Leaving-group-controlled
product selectivity and mechanistic studies. J. Am. Chem. Soc.
2017, 139, 11482−11492.
(
2 ) (a) Gramage-Doria, R.; Hessels, J.; Leenders, S. H. A. M.; Tröppner,
O.; Dürr, M.; Ivanović-Burmazović, I.; Reek, J. N. H. Gold(I)
catalysis at extreme concentrations inside self-assembled
nanospheres Angew. Chem., Int. Ed. 2014, 53, 13380–13384. (b)
Wang, Q.-Q.; Gonell, S.; Leenders, S. H. A. M.; Dürr, M.; Ivanović-
Burmazović, I.; Reek, J. N. H. Self-assembled nanospheres with
multiple endohedral binding sites pre-organize catalysts and
substrates for highly efficient reactions. Nat. Chem. 2016, 8, 225–
230.
(
22) Braüer, T. M.; Zhang, Q.; Tiefenbacher, K. Iminium catalysis inside
a
self-assembled supramolecular capsule: Modulation of
enantiomeric excess. Angew. Chem., Int. Ed. 2016, 55, 7698−7701.
(23) Catti, L.; Tiefenbacher, K. Brønsted acid-catalyzed carbonyl-olefin
metathesis inside a self-assembled supramolecular host. Angew.
Chem., Int. Ed. 2018, 57, 14589–14592
(
24) (a) Jongkind, L.J.; Elemans, J.A.A.W.; Reek, J.N.H. Cofactor
controlled encapsulation of a rhodium hydroformylation catalyst.
Angew. Chem., Int. Ed. 2019, 58, 2696–2699. (b) Nurttila, S. S.;
Brenner, W.; Mosquera, J.; vanꢀVliet, K. M.; Nitschke, J. R.; Reek, J.
N. H. Size-selective hydroformylation by a rhodium catalyst
confined in a supramolecular cage. Chem. Eur. J. 2019, 25, 609–
6
20.
ACS Paragon Plus Environment