Klys et al.
1773
GC as 15 and, tentatively, as the trifluoromethyl analogue of
18.
Compound 22
1H NMR (500 MHz, C6D6) δ: 0.72 (d, J = 12 Hz, 2H),
1.68 (s, 12H), 1.73 (m, 2H), 3.44 (m, 4H), and 4.10 (t, J =
12 Hz, 4H). 13C NMR (75 MHz, CDCl3) δ: 24.76, 24.86,
30.21, 59.47, 79.13, and 108.43. MS (CI, NH3) m/z: 289
(M + H)+ (100), 288 (M+, 14), 145 (M/2 + H)+ (37), and 128
(33). The molecular structure of 22 was secured by means of
single crystal X-ray diffraction.
Acknowledgements
The authors are grateful for continued financial support
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC). We thank Dr. Jim Britten for the X-
ray structure of 22.
Compound 23
References
1H NMR (200 MHz, C6D6) δ: 1.35 (m (br), 2H), 1.44 (s,
6H), 1.51 (s, 6H), 3.28 (m, 2H), and 3.78 (m, 2H). 13C NMR
(50.3 MHz, CDCl3) δ: 23.8, 24.3, 28.6, 29.8, 60.3, 84.9,
108.0, and 172.5. MS (EI) m/z: 231 (M + 1), 215, 200, 172,
164, 129, 103, and 70 (100%); MS (CI, NH3) m/z: 231 (M +
H)+ (100), 173 (3), 145 (13), and 128 (34).
1. See, for example: (a) N. Merkley, D.L. Reid, and J. Warkentin.
Tetrahedron Lett. 43, 1927 (2002); (b) N. Merkley and J.
Tee/001/001_index.htm ARKIVOC [online], 2, 12 (2001);
(c) N. Merkley, P.C. Venneri, and J. Warkentin. Can. J. Chem.
79, 312 (2001); (d) N. Merkley and J. Warkentin. Can. J.
Chem. 78, 942 (2000); (e) N. Merkley, M. El-Saidi, and J.
Warkentin. Can. J. Chem. 78, 356 (2000); (f) M. Dawid, G.
Mloston, and J. Warkentin. J. Org. Lett. 3, 2455 (2001); (g) M.
Dawid, P.C. Venneri, and J. Warkentin. Can. J. Chem. 79, 110
(2001); Addendum, 79, 1294 (2001); (h) V. Nair, S. Bindu,
and L. Balagopal. Tetrahedron Lett. 42, 2043 (2001); (i) P.C.
Venneri and J. Warkentin. Can. J. Chem. 78, 1194 (2000); (j)
J.A. Dunn, J.P. Pezacki, M.J. McGlinchey, and J. Warkentin. J.
Org. Chem. 64, 434 (1999); (k) J.H. Rigby, S. Laurent, A.
Cavezza, and M.J. Heeg. J. Org. Chem. 63, 5587 (1998); (l)
H.M. Muchall, N.H. Werstiuk, B. Choudhury, J. Ma, J.
Warkentin, and J.P. Pezacki. Can. J. Chem. 76, 238 (1998); (m)
J.H. Rigby, A. Cavezza, and M.J. Heeg. J. Am. Chem. Soc.
120, 3664 (1998); (n) J.P. Ross, P. Couture, and J. Warkentin.
Can. J. Chem. 75, 1331 (1997); (o) P. Couture, D.L. Pole, and
J. Warkentin. J. Chem. Soc., Perkin Trans. 2, 1565 (1997); (p)
D.L. Pole and J. Warkentin. J. Org. Chem. 62, 4065 (1997);
(q) J.H. Rigby, A. Cavezza, and G. Ahmed. J. Am. Chem. Soc.
118, 12848 (1996); (r) K. Kassam, D.L. Pole, M. El-Saidi, and
J. Warkentin. J. Am. Chem. Soc. 116, 1161 (1994); (s) M. El-
Saidi, K. Kassam, D.L. Pole, T. Tadey, and J. Warkentin. J.
Am. Chem. Soc. 14, 8751 (1992).
Thermolysis of 6 in benzene containing 1,1,1-
trifluoroacetone in 5-fold excess
A solution of 6 (172 mg, 1.0 mmol) in benzene (10 mL)
containing 1,1,1-trifluoroacetone (560 mg, 5.0 mmol) was
heated as described above. Three products, with GC reten-
tion times (rt) of 5.2, 6.1, and 6.9 min were obtained. The
fraction with rt = 6.9 min was collected and shown to be 15
(one diastereomer) by means of NMR spectroscopy (1H, 19F)
and mass spectrometry. The mass spectra of the other frac-
tions did not match the expectation for 17 which, like 15,
should have provided (M + H)+ and (M + NH4)+ signals in
the CI, NH3 spectra.
Compound 15
1H NMR (200 MHz, C6D6) δ: 1.38 (s, 3H), 1.43 (s, 3H),
1.52 (m, 2H), 3.34 (m, 2H), 3.74 (m, 2H). 19F NMR
(188.3 MHz, CDCl3, ref. external CFCl3 at –71.3 δ) δ:
–78.82 (s), and –78.84 (s). MS (CI, NH3) m/z: 328 (M +
NH4)+ (12), 311 (M + H)+ (100), 241(37), and 199 (15).
2. (a) P. Couture, M. El-Saidi, and J. Warkentin. Can. J. Chem.
75, 326 (1997); (b) N. Merkley and J. Warkentin. Can. J.
Chem. 80, 1187 (2002).
3. W.B. Smith. J. Org. Chem. 60, 7456 (1995).
4. D.L. Reid and J. Warkentin. J. Chem. Soc., Perkin Trans. 2,
Compound 18
This material was not isolated in pure form. Structure 18
was assigned tentatively on the basis of its GC retention
time, its mass spectrum (GC-MS) in which (M-H2O)+ was
prominent at m/z = 144, and the 1H NMR spectrum
(200 MHz, C6D6) of a crude sample, that showed absorption
at δ = 0.72, 1.74 (s, 5H), 3.41(m, 4H), 4.33 (s, 1H), and 5.95
(s, 1H). As expected for structure 18, the compound was
very unstable.
1980 (2000).
5. M.S. Newman and E. Kilbourn. J. Org. Chem. 35, 3186 (1970).
6. V.A. Tikhomirov, V.V. Smirnov, and I.V. Rostov. Zh. Fiz.
Khim. 70, 183 (1996); Chem. Abstr. 124, 288 514 (1996).
7. O.N. Ventura, A. Lledos, R. Bonaccorsi, J. Bertran, and J.
Tomasi. Theor. Chim. Acta, 72, 175 (1987).
Thermolysis of 6 in benzene containing 1,1,1-
trifluoroacetone in 10-fold excess
A solution of 6 (172 mg, 1.0 mmol) in benzene (10 mL)
containing 1,1,1-trifluoroacetone (1.12 g, 10 mmol) was
heated as described above. Two products were identified by
8. S. Sarel, J. Katzhendler, and L.A. Poles. J. Chem. Soc. B,
1847 (1971); S. Li and P. Deslongchamps. Tetrahedron Lett.
35, 5641 (1994).
9. M. Yan, Z. Zhang, X. Lei, Y. Xi, and Y. Xu. Yaoxue Xuebao,
20, 219 (1985); Chem. Abstr. 104, 109 566 (1986).
© 2004 NRC Canada