Published on Web 04/12/2005
Heterogeneously Catalyzed Aerobic Oxidative Biaryl Coupling
of 2-Naphthols and Substituted Phenols in Water
Mitsunori Matsushita,† Keigo Kamata,‡ Kazuya Yamaguchi,†,‡ and
Noritaka Mizuno*,†,‡
Contribution from the Department of Applied Chemistry, School of Engineering, The UniVersity
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, and Core Research for EVolutional
Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho,
Kawaguchi, Saitama, 332-0012, Japan
Received January 22, 2005; E-mail: tmizuno@mail.ecc.u-tokyo.ac.jp.
Abstract: The oxidative coupling reaction can efficiently be promoted by supported ruthenium catalyst
Ru(OH)x/Al2O3. A variety of 2-naphthols and substituted phenols can be converted to the corresponding
biaryl compounds in moderate to excellent yields using molecular oxygen as a sole oxidant in water without
any additives. The catalysis is truly heterogeneous in nature, and Ru(OH)x/Al2O3 can easily be recovered
after the reaction. The catalyst can be recycled seven times with the maintenance of the catalytic
performance, and the total turnover number reaches up to 160. The results of competitive coupling reactions
suggest that the present oxidative biaryl coupling reaction proceeds via the homolytic coupling of two radical
species and the Ru(OH)x/Al2O3 catalyst acts as an one-electron oxidant. Two radical species are coupled
to give the corresponding biaryl product, and the one-electron reduced catalyst is reoxidized by molecular
oxygen. The amounts of O2 uptake and H2O formation were almost one-quarter and one-half the amount
of substrate consumed, respectively, supporting the reaction mechanism. The kinetic data and kinetic isotope
effect show that the reoxidation of the reduced catalyst is the rate-limiting step for the coupling reaction.
reaction,3 they are often hazardous, expensive, stoichiometric,
and difficult to remove from the reaction solution.
Introduction
The syntheses of the biaryl compounds are of importance
because they are used as building blocks of many alkaloids and
natural products, auxiliaries, and ligands for a wide range of
organic functional transformations.1 Especially, homochiral 1,1′-
binaphthalene derivatives have successfully been utilized as
chiral inducers for stereo- and enantioselective reactions because
of their axial dissymmetry and molecular flexibility.2 Therefore,
much attention has been paid to the development of efficient
syntheses of 1,1′-binaphthalene-2,2′-diol (BINOL) derivatives,
which are versatile sources of the various 1,1′-binaphthalene
skeletons. The oxidative coupling of 2-naphthols is one of the
most useful methods for the syntheses of BINOL derivatives.
Although various kinds of stoichiometric oxidation reagents such
as Fe, Cu, Mn, and Ti salts have been employed for the
In the laboratory scale synthesis as well as the manufacture
of large-volume petrochemicals, the environmentally unaccept-
able processes should be replaced by “greener” catalytic ones
with clean, safe, and inexpensive oxidant of molecular oxygen.
While some efficient catalytic procedures using molecular
oxygen as a sole oxidant for the above reaction have been
developed,4-6 most of them are homogeneous systems, and there
are few heterogeneous catalysts despite their significant advan-
(3) (a) Toda, F.; Tanaka, K.; Iwata, S. J. Org. Chem. 1989, 54, 3007. (b) Dewar,
M. J. S.; Nakaya, T. J. Am. Chem. Soc. 1968, 90, 7134. (c) Ding, K.; Wang,
Y.; Zhang, L.; Wu, Y. Tetrahedron 1996, 52, 1005. (d) Hovorka, M.;
Gu¨nterova´, J.; Za´vada, J. Tetrahedron Lett. 1990, 31, 413. (e) Doussot, J.;
Guy, A.; Ferroud, C. Tetrahedron Lett. 2000, 41, 2545. (f) Nishino, H.;
Itoh, N.; Nagashima, M.; Kurosawa, K. Bull. Chem. Soc. Jpn. 1992, 65,
620.
(4) Examples of catalytic aerobic oxidative biaryl coupling (homogeneous
system): (a) Sharma, V. B.; Jain, S. L.; Sain, B. Tetrahedron Lett. 2003,
44, 2655. (b) Noji, M.; Nakajima, M.; Koga, K. Tetrahedron Lett. 1994,
35, 7983. (c) Hwang, D.-R.; Chen, C.-P.; Uang, B.-J. Chem. Commun.
1999, 1207. (d) Yadav, J. S.; Reddy, B. V. S.; Gayathri, K. U.; Prasad, A.
R. New J. Chem. 2003, 27, 1684. (e) Umare, P. S.; Tembe, G. L. React.
Kinet. Catal. Lett. 2004, 82, 173. (f) Gupta, R.; Mukherjee, R. Tetrahedron
Lett. 2000, 41, 7763. (g) Nishino, H.; Satoh, H.; Yamashita, M.; Kurosawa,
K. J. Chem. Soc., Perkin Trans. 2 1999, 1919. (h) Umare, P. S.; Tembe,
G. L. React. Kinet. Catal. Lett. 2004, 82, 173.
† The University of Tokyo.
‡ CREST.
(1) (a) Taylor, W. I.; Buttersby, A. R. OxidatiVe Coupling of Phenols; Marcel
Dekker: New York, 1967. (b) Bringmann, G.; Walter, R. Angew. Chem.,
Int. Ed. Engl. 1990, 29, 977. (c) Nasir, M. S.; Cohen, B. I.; Karlin, K. D.
J. Am. Chem. Soc. 1992, 114, 2482. (d) Solomon, E. I.; Sundaram, U. M.;
Machonkin, T. E. Chem. ReV. 1996, 96, 2563.
(2) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New
York, 1994. (b) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345. (c)
Noyori, R. Tetrahedron 1994, 50, 4259. (d) Trost, B. M. Pure Appl. Chem.
1992, 64, 315. (e) Hayashi, T.; Kudo, A.; Ozawa, F. Pure Appl. Chem.
1992, 64, 421. (f) Mikami, K.; Shimizu, M. Chem. ReV. 1992, 92, 1021.
(g) Kagan, H. B.; Riant, O. Chem. ReV. 1992, 92, 1007. (h) Blaser, H.-U.
Chem. ReV. 1992, 92, 935. (i) Rosini, G.; Franzini, L.; Raffaelli, A.;
Salvadori, P. Synthesis 1992, 503. (j) Pu, L. Chem. ReV. 1998, 98, 2405.
(k) Kocˇovsky´, P.; Vyskocˇil, Sˇ.; Sm´rcina, M. Chem. ReV. 2003, 103, 3213.
(l) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. ReV. 2003, 103, 3155.
(5) Examples of catalytic aerobic oxidative biaryl coupling (heterogeneous
system): (a) Prasad, M. R.; Kamalakar, G.; Kulkarni, S. J.; Raghavan, K.
V. J. Mol. Catal. A 2002, 180, 109. (b) Armengol, E.; Corma, A.; Garc´ıa,
H.; Primo, J. Eur. J. Org. Chem. 1999, 1915, 5. (c) Kantam, M. L.; Kavita,
B.; Figueras, F. Catal. Lett. 1998, 51, 113. (d) Mastrorilli, P.; Muscio, F.;
Suranna, G. P.; Nobile, C. F.; Latronico, M. J. Mol. Catal. A 2001, 165,
81. (e) Sakamoto, T.; Yonehara, H.; Pac, C. J. Org. Chem. 1997, 62, 3194.
(f) Iwai, K.; Yamauchi, T.; Hashimoto, K.; Mizugaki, T.; Ebitani, K.;
Kaneda, K. Chem. Lett. 2003, 32, 58. (g) Fujiyama, H.; Kohara, I.; Iwai,
K.; Nishiyama, S.; Tsuruya, S.; Masai, M. J. Catal. 1999, 188, 417.
9
6632
J. AM. CHEM. SOC. 2005, 127, 6632-6640
10.1021/ja050436k CCC: $30.25 © 2005 American Chemical Society