Inorganic Chemistry
Article
+
2+
(
22) Gagnon, N.; Tolman, W. B. [CuO] and [CuOH] complexes:
intermediates in oxidation catalysis? Acc. Chem. Res. 2015, 48 (7),
126−2131.
23) Patra, A. K.; Mukherjee, R. Bivalent, Trivalent, and Tetravalent
(41) Corona, T.; Company, A. Spectroscopically Characterized
Synthetic Mononuclear Nickel−Oxygen Species. Chem. - Eur. J. 2016,
22 (38), 13422−13429.
2
(
(42) Haines, R. I.; McAuley, A. Synthesis and reactions of nickel(III)
complexes. Coord. Chem. Rev. 1981, 39, 77−119.
Nickel Complexes with a Common Tridentate Deprotonated Pyridine
Bis-Amide Ligand. Molecular Structures of Nickel(II) and Nickel(IV)
and Redox Activity. Inorg. Chem. 1999, 38, 1388−1393.
(43) Collins, T. J.; Nichols, T. R.; Uffelman, E. S. A square-planar
nickel(III) complex of an innocent ligand system. J. Am. Chem. Soc.
1991, 113 (12), 4708−9.
(44) Stuart, J. N.; Goerges, A. L.; Zaleski, J. M. Characterization of
the Ni(III) Intermediate in the Reaction of (1,4,8,11-
(
24) Pirovano, P.; Farquhar, E. R.; Swart, M.; Fitzpatrick, A. J.;
Morgan, G. G.; McDonald, A. R. Characterization and Reactivity of a
Terminal Nickel(III)−Oxygen Adduct. Chem. - Eur. J. 2015, 21,
3
(
785−3790.
Tetraazacyclotetradecane)nickel(II) Perchlorate with KHSO : Im-
5
25) Corona, T.; Pfaff, F. F.; Acun
̃
a-Pares
́
, F.; Draksharapu, A.;
plications to the Mechanism of Oxidative DNA Modification. Inorg.
Chem. 2000, 39, 5976−5984.
Whiteoak, C. J.; Martin-Diaconescu, V.; Lloret-Fillol, J.; Browne, W.
R.; Ray, K.; Company, A. Reactivity of a Nickel(II) Bis(amidate)
Complex with meta-Chloroperbenzoic Acid: Formation of a Potent
Oxidizing Species. Chem. - Eur. J. 2015, 21 (42), 15029−15038.
26) Pirovano, P.; Farquhar, E. R.; Swart, M.; McDonald, A. R.
Tuning the Reactivity of Terminal Nickel(III)−Oxygen Adducts for
C−H Bond Activation. J. Am. Chem. Soc. 2016, 138 (43), 14362−
(45) Pirovano, P.; McDonald, A. R. Synthetic High-Valent M-O-X
Oxidants. Eur. J. Inorg. Chem. 2018, 2018 (5), 547−560.
(46) Brigati, G.; Lucarini, M.; Mugnaini, V.; Pedulli, G. F.
Determination of the Substituent Effect on the O−H Bond
Dissociation Enthalpies of Phenolic Antioxidants by the EPR Radical
Equilibration Technique. J. Org. Chem. 2002, 67 (14), 4828−4832.
(
(47) Lee, J. Y.; Peterson, R. L.; Ohkubo, K.; Garcia-Bosch, I.; Himes,
14370.
R. a.; Woertink, J.; Moore, C. D.; Solomon, E. I.; Fukuzumi, S.; Karlin,
K. D. Mechanistic insights into the oxidation of substituted phenols
via hydrogen atom abstraction by a cupric-superoxo complex. J. Am.
Chem. Soc. 2014, 136, 9925−9937.
(
27) Corona, T.; Draksharapu, A.; Padamati, S. K.; Gamba, I.;
Martin-Diaconescu, V.; Acuna-Pares, F.; Browne, W. R.; Company, A.
Rapid Hydrogen and Oxygen Atom Transfer by a High-Valent
̃
́
Nickel−Oxygen Species. J. Am. Chem. Soc. 2016, 138 (39), 12987−
(48) Kundu, S.; Miceli, E.; Farquhar, E. R.; Ray, K. Mechanism of
1
(
2996.
phenol oxidation by heterodinuclear Ni Cu bis(μ-oxo) complexes
involving nucleophilic oxo groups. Dalton Trans 2014, 43, 4264−
28) Mondal, P.; Pirovano, P.; Das, A.; Farquhar, E. R.; McDonald,
A. R. Hydrogen Atom Transfer by a High-Valent Nickel-Chloride
Complex. J. Am. Chem. Soc. 2018, 140 (5), 1834−1841.
(
4
(
267.
49) Sastri, C. V.; Lee, J.; Oh, K.; Lee, Y. J.; Lee, J.; Jackson, T. A.;
29) Pirovano, P.; Berry, A. R.; Swart, M.; McDonald, A. R. Indirect
III
II
Ray, K.; Hirao, H.; Shin, W.; Halfen, J. A.; Kim, J.; Que, L., Jr.; Shaik,
S.; Nam, W. Axial ligand tuning of a nonheme iron(IV)−oxo unit for
hydrogen atom abstraction. Proc. Natl. Acad. Sci. U. S. A. 2007, 104,
evidence for a Ni -oxyl oxidant in the reaction of a Ni complex with
peracid. Dalton Trans 2018, 47 (1), 246−250.
(30) Pirovano, P.; Twamley, B.; McDonald, A. R. Modulation of
1
(
9181−19186.
Nickel Pyridinedicarboxamidate Complexes to Explore the Properties
50) Yiu, D. T. Y.; Lee, M. F. W.; Lam, W. W. Y.; Lau, T.-C. Kinetics
of High-valent Oxidants. Chem. - Eur. J. 2018, 24 (20), 5238−5245.
and Mechanisms of the Oxidation of Phenols by a trans-
Dioxoruthenium(VI) Complex. Inorg. Chem. 2003, 42 (4), 1225−
(31) Sankaralingam, M.; Lee, Y.-M.; Karmalkar, D. G.; Nam, W.;
Fukuzumi, S. A Mononuclear Non-heme Manganese(III)−Aqua
Complex as a New Active Oxidant in Hydrogen Atom Transfer
Reactions. J. Am. Chem. Soc. 2018, 140 (40), 12695−12699.
1
232.
(
51) Lansky, D. E.; Goldberg, D. P. Hydrogen Atom Abstraction by
a High-Valent Manganese(V)−Oxo Corrolazine. Inorg. Chem. 2006,
5 (13), 5119−5125.
52) Markle, T. F.; Darcy, J. W.; Mayer, J. M. A new strategy to
(32) Rajabimoghadam, K.; Darwish, Y.; Bashir, U.; Pitman, D.;
4
(
Eichelberger, S.; Siegler, M. A.; Swart, M.; Garcia-Bosch, I. Catalytic
Aerobic Oxidation of Alcohols by Copper Complexes Bearing Redox-
Active Ligands with Tunable H-Bonding Groups. J. Am. Chem. Soc.
efficiently cleave and form C−H bonds using proton-coupled electron
transfer. Sci. Adv. 2018, 4 (7), No. eaat5776.
2
(
018, 140 (48), 16625−16634.
33) Huynh, M. H. V.; Meyer, T. J. Proton-Coupled Electron
Transfer. Chem. Rev. 2007, 107 (11), 5004−5064.
34) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry of
(53) Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M. A
Continuum of Proton-Coupled Electron Transfer Reactivity. Acc.
Chem. Res. 2018, 51 (10), 2391−2399.
(
(54) Ram, M. S.; Hupp, J. T. Linear free energy relations for
proton-coupled electron transfer reagents and its implications. Chem.
Rev. 2010, 110 (12), 6961−7001.
(
multielectron transfer kinetics: a brief look at the Broensted/Tafel
analogy. J. Phys. Chem. 1990, 94 (6), 2378−2380.
35) Hammes-Schiffer, S.; Stuchebrukhov, A. A. Theory of Coupled
(55) Weatherly, S. C.; Yang, I. V.; Thorp, H. H. Proton-Coupled
Electron and Proton Transfer Reactions. Chem. Rev. 2010, 110 (12),
939−6960.
36) Mayer, J. M. Understanding hydrogen atom transfer: from
bond strengths to Marcus theory. Acc. Chem. Res. 2011, 44, 36−46.
37) Rosenkoetter, K. E.; Wojnar, M. K.; Charette, B. J.; Ziller, J. W.;
Electron Transfer in Duplex DNA: Driving Force Dependence and
Isotope Effects on Electrocatalytic Oxidation of Guanine. J. Am. Chem.
Soc. 2001, 123 (6), 1236−1237.
6
(
(56) Osako, T.; Ohkubo, K.; Taki, M.; Tachi, Y.; Fukuzumi, S.; Itoh,
(
S. Oxidation Mechanism of Phenols by Dicopper−Dioxygen (Cu /
2
Heyduk, A. F. Hydrogen-Atom Noninnocence of a Tridentate [SNS]
Pincer Ligand. Inorg. Chem. 2018, 57 (16), 9728−9737.
(
O ) Complexes. J. Am. Chem. Soc. 2003, 125 (36), 11027−11033.
2
(57) Garcia-Bosch, I.; Cowley, R. E.; Díaz, D. E.; Peterson, R. L.;
38) Belle, C.; Bougault, C.; Averbuch, M.-T.; Durif, A.; Pierre, J.-L.;
Solomon, E. I.; Karlin, K. D. Substrate and Lewis Acid Coordination
Latour, J.-M.; Le Pape, L. Paramagnetic NMR Investigations of High-
Spin Nickel(II) Complexes. Controlled Synthesis, Structural,
Electronic, and Magnetic Properties of Dinuclear vs Mononuclear
Species. J. Am. Chem. Soc. 2001, 123 (33), 8053−8066.
II
2−
Promote O−O Bond Cleavage of an Unreactive L Cu (O
)
2
2
2
III
Species to Form L Cu (O) Cores with Enhanced Oxidative
2
2
2
Reactivity. J. Am. Chem. Soc. 2017, 139 (8), 3186−3195.
(58) Guttenplan, J. B.; Cohen, S. G. Triplet energies, reduction
(39) Barefield, E. K.; Busch, D. H.; Nelson, S. M. Iron, cobalt, and
potentials, and ionization potentials in carbonyl-donor partial charge-
transfer interactions. I. J. Am. Chem. Soc. 1972, 94 (11), 4040−4042.
nickel complexes having anomalous magnetic moments. Q. Rev.,
Chem. Soc. 1968, 22 (4), 457−498.
(
40) Kruger, H. J.; Peng, G.; Holm, R. H. Low-Potential
Nickel(III,II) Complexes - New Systems Based on Tetradentate
Amidate Thiolate Ligands and the Influence of Ligand Structure on
Potentials in Relation to the Nickel Site in [NiFe]-Hydrogenases.
Inorg. Chem. 1991, 30 (4), 734−742.
H
Inorg. Chem. XXXX, XXX, XXX−XXX