libraries, makes this class of compound an attractive one for
further synthetic study and biological evaluation of the
mechanism.
Financial support from the European Community for a post-
doctoral fellowship (Programme Training and Mobility Re-
search) to A. M. (contract no. ERBFMBICT961664) is
gratefully acknowledged.
Me
HO
O
OMe
Me
RO
O
OMe
iii
Me
N3
O
OMe
OH
i
O
O
O
O
OH
6
3
4 R = H
R = Tf
ii
5
iv
Notes and References
N
Cl
†
E-mail: george.fleet@chem.ox.ac.uk
N
Me
N3
O
NH2
OH
Me
O
OH
OH
NO2
v
1 E. M. Acton, K. J. Ryan and A. E. Luetzow, J. Med. Chem., 1977, 20,
1
362.
Me
N3
O
NH
OH
N3
2 Y. Hayakawa, M. Nakagawa, H. Kawai, K. Tanabe, H. Nakayama, A.
Shimazu, H. Seto and N. Õtake, J. Antibiot., 1983, 36, 934.
3 Y. Hayakawa, M. Nakagawa, H. Kawai, K. Tanabe, H. Nakayama, A.
Shimazu, H. Seto and N. Õtake, Agric. Biol. Chem., 1985, 49, 2685.
OH
OH
7
8
OH
4
M. Kamishohara, H. Kawai, T. Sakai, T. Isoe, K. Hasegawa, J.
Mochizuki, T. Uchida, S. Kataoka, H. Yamaki, T. Tsuruo and N. Õtake,
Oncology Res., 1994, 6, 383; Y. S. Lee, K. Nishio, H. Ogasawara, Y.
Funayama, T. Ohira and N. Saijo, Cancer Res., 1995, 55, 1075.
9
N
NH
N
iv
N
R
N
5 M. Kamishohara, H. Kawai, A. Odagawa, T. Isoe, J. Mochizuki, T.
Uchida, Y. Hayakawa, H. Seto, T. Tsuruo and N. Õtake, J. Antibiot.,
1993, 46, 1439.
N
Me
O
NH
NO2
ix
6
M. Kamishohara, H. Kawai, A. Odagawa, T. Isoe, J. Mochizuki, T.
Uchida, Y. Hayakawa, H. Seto, T. Tsuruo and N. Õtake, J. Antibiot.,
Me
O
NH
1
R HN
OR3
1
994, 47, 1305.
OR2
N3
7 M. Kamishohara, A. Odagawa, A. Suzuki, T. Uchida, T. Kawasaki, T.
Tsuruo and N. Õtake, J. Antibiot., 1995, 48, 1467.
8 M. Kamishohara, H. Kawai, T. Uchida, T. Tsuruo and N. Õtake,
Chemother. Pharmacol., 1996, 38, 495.
9 A. M. Burger, G. Kaur, M. Hollingshead, R. T. Fischer, K. Nagashima,
L. Malspiels, K. L. K. Duncan and E. A. Sausville, Clinical Cancer Res.,
1997, 3, 455.
O
1
2
3
1
1
2
4 R = H, R –R = CMe2
O
x
1
2
3
5 R = C11H23CONHCH2CO, R –R = CMe2
R1 = C11H23CONHCH2CO, R = R = H
xi
2
3
1
0 R = Cl
1 R = NH2
12 R = NHCH(OEt)2
3 R = NHCH(OEt)OMe
vii
viii
1
1
1
0 T. Sakai, K. Shindo, A. Odagawa, A. Suzuki, H. Kawai, K. Kobayashi,
Y. Hayakawa, H. Seto and N. Õtake, J. Antibiot., 1995, 48, 899.
Scheme 1 Reagents and conditions: i, PCC, molecular sieves 3Å, CH
then NaBH , EtOH–H O, 0 °C; ii, Tf O, Py, CH Cl , 210 °C; iii, NaN
DMF, then TFA–H O 3:7; iv, TFA–H
aq), then 4,6-dichloro-5-nitropyrimidine, Et
CSA, acetone; vii, NH (aq), MeOH, 60 °C; viii, HC(OEt)
MeOH, silica; ix, Pd/C, MeOH; x, dodecanoylglycine, DMF,
N-hydroxysuccinimide, WSC·HCl; xi, 70% AcOH (aq), 60 °C
2
Cl
2
,
11 J. Jary, K. Capek and J. Kovár, Collect. Czech. Chem., Commun., 1963,
28, 217.
12 B. Davis, A. A. Bell, R. J. Nash, A. A. Watson, R. C. Griffiths, M. G.
Jones, C. Smith and G. W. J. Fleet, Tetrahedron Lett., 1996, 37,
8565.
13 All new compounds have satisfactory HRMS or CHN microanalytical
data; the anticipated b-stereochemistry at the anomeric position of 14
was confirmed by NOE enhancements between H-1 and the protons at
H-2 (11.2%), H-3 (2%) and H-5 (13.8%).
4
2
2
2
2
3
,
2
2
O 1:1, 1,4-dioxane, reflux; v, NH
N, DMF; vi, Me C(OMe)
, 140 °C, then
3
(
3
2
2
,
3
3
2
H ,
neously cyclised to give the purine 1413 [oil; [a] 21
.22, MeOH)] in 53% yield.
Condensation of the amine 14 with dodecanoylglycine5
in DMF in the presence of N-hydroxysuccinimide and 1-(3-
dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
WSC·HCl) gave the glycopeptide 15 in 71% yield.14 Finally,
removal of the acetonide in 14 with aq. AcOH gave rhamnospi-
+25.4 (c
D
0
1
4 The structure of 15 in terms of the anomeric configuration and of the site
of attachment to the adenine nucleus was assigned on the basis of
COSY, HMQC and HMBC experiments.
H 3
15 Selected data for 2: d (500 MHz, CD OD) 0.91 [3H, t, J 6.8,
CH (CH ) CO], 1.22 (3H, d, J 6.1, H -6A) 1.28–1.34 [16H, m,
3
2 10
3
(
CH
3
(CH
2
)
8
CH
2
], 1.65 [2H, m, CH
CH CH
3
(CH
2
)
8
2 2
CH CH CO], 2.30 [2H, t, J
21
7.6, CH
3
(CH
2
)
8
2
2
CO], 3.62 (1H, dq, J 6.1, 9.9, H-5A), 3.74 (1H,
CONH), 3.95 (1H, t, J 10.2,
H-4A), 4.02 (1H, d, J 2.2, H-2A), 5.70 (1H, br s, H-1A), 8.19 (1H, s), 8.35
camycin 2, mp 224–226 °C (decomp.) [a]
D
+9.71 (c 0.35
dd, J 3.5, 10.5, H-3A), 3.90 (2H, s, RNHCH
2
MeOH) in 82% yield; rhamnospicamycin is columnable in
organic solvents and easy to purify. The NMR of 2 in DMSO is
temperature dependent (in contrast to the NMR in CD OD) and
3
may indicate some propensity for intramolecular hydrogen
bonding between the carbohydrate hydroxy protons and the
adenine nucleus.15
In a preliminary study rhamnospicamycin 2 was found to be
highly cytotoxic with an IC50 value for cell growth (assessed
over 15 h in culture using human myeloma cells, HL60 cells) is
2
(1H, s); d
H
(500 MHz, [ H
6
]DMSO, 25 °C) 0.83 [3H, t, J 6.9,
-6A) 1.20–1.25 [16H, m,
CH (CH 10CO], 0.99 (3H, m,
3
2
)
H
3
3
CH (CH ) CH ], 1.48 [2H, t, J 6.8, CH (CH ) CH CH CO], 2.12 [2H,
3
2 8
2
2 8
2
2
t, J 7.4, CH
RNHCH
3
2 8 2 2
(CH ) CH CH CO], 3.50–3.71 (4H, m), 3.68 (2H, d, J 5.7,
2
CONH), 3.80 (1H, s), 4.75 (1H, br s), 5.44, 5.55 (1H, 2 3 br
s), 7.15 (1H, br. s), 7.60 (1H, d, J 9.3), 7.99, 8.00 (1H, 2 3 d, J 5.7), 8.21,
2
8
8
1
.22 (1H, 2 3 s), 8.27, 8.29 (1H, 2 3 s); d
0 °C) 0.86 [3H, t, J 7.0, CH (CH 10CO], 1.05 (3H, d, J 6.1, H
.25–1.31 [16H, m, CH (CH
(CH CH CH CO], 2.16 [2H, t, J 7.5, CH
H 6
(500 MHz, [ H ]DMSO,
3
2
)
8
3
-6A)
3
2
)
CH
2
], 1.53 [2H, t,
(CH CH
J
CH
7.2,
1
20 n ; thus 2 displays much the same potency as that reported
M
CH
3
)
2 8
2
2
3
2
)
8
2
2
CO],
for the dodecanoyl derivative of spicamycin 1.
3
.48 (1H, dq, J 6.1, 9.4, H-5A), 3.65 (1H, dd, J 2.9, 10.3, H-3A), 3.70 (1H,
m), 3.72 (2H, d, J 5.5, RNHCH CONH), 3.86 (1H, d, J 2.1, H-2A), 5.00
(1H, br s), 5.73 (1H, br s, H-1A), 6.90 (1H, br s), 7.27 (1H, d, J 8.6), 7.60
While there are a number of steps in the synthesis that have
yet to be optimised, we have shown that variation in the
carbohydrate fragment of spicamycin may allow a wide range
of novel materials with cytotoxic activity to be prepared.
Spicamycin incorporates a nucleoside, a fatty acid, a sugar and
an amino acid all into one component; the potent cytotoxicity
with the possibility of a novel mode of action as an anti-cancer
agent in regard to modification of glycoprotein processing,
together with the opportunity to generate combinatorial
2
2
C 6
(1H, br s), 8.11 (1H, s), 8.27 (1H, s); d (125 MHz, [ H ]DMSO, 80 °C)
13.51 (q), 17.82 (q, C-6A), 21.74, 24.92, 28.37, 28.49, 28.54, 28.66,
2
5
1
3 2 2
8.71, 28.73, 31.01, 35.19 [10 3 t, CH (CH )10CONHCH CONH],
2.89, 70.00, 71.44, 71.86, 78.40 (5 3 d, C-1A, C-2A, C-3A, C-4A, C-5A),
18.60 (s), 140.36 (d), 151.89 (d), 151.89 (s), 152.36 (s), 169.45, 172.55
(2 3 s, 2 3 C§O)
Received in Liverpool, UK, 27th July 1998; 8/05878D
2120
Chem. Commun., 1998